

Cardiovascular Magnetic Resonance Evaluation of Aortic Stenosis Severity using Single Plane Measurement of Effective Orifice Area

Complementary Information

J. Garcia^{1, 2}, O. R. Marrufo³, A.O. Rodriguez³, E. Larose¹, P. Pibarot¹, L. Kadem^{2§}

¹ Québec Heart & Lung Institute, Laval University, Québec, Canada.

- ² Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montréal, Canada.
- ³ Department of Electrical Engineering, Universidad Autonoma Metropolitana, Mexico DF, Mexico.

UNIVERSITÉ

- AST is given by the term: $[\nabla \cdot (\omega \wedge V)]$
- AST maps determine the flow regions responsible for the sound generated by unsteady fluid motion and require the determination of velocity (V) and vorticity (ω) maps
- AST computation considers that velocity is known only at discrete locations (voxel) on a 2D plane to compute vorticity

2

• Once vorticity and AST maps are computed, a jet shear layer detection (JSLD) contour algorithm is applied to estimate effective orifice area (EOA)

JSLD initial contour

JSLD EOA

• A Matlab application with all EOA methods used on this paper can be downloaded for free from our web site:

http://users.encs.concordia.ca/~kadem/Research.html

 This application is compatible with Philips 1.5T and 3T DICOM formats