

Figure S1. Histograms of ratios of principal eigenvalues. STSRI data were reconstructed
at $3.6 \mu \mathrm{~m}$ isotropic resolution. (A) abs_ratio $\left(\lambda_{\text {cell, }}, \lambda_{\text {sheetlet }}\right)$, (B) abs_ratio $\left(\lambda_{\text {sheetlet }}, \lambda_{\text {sheetlet-normal }}\right)$ and (C) $\operatorname{abs} _$ratio $\left(\lambda_{\text {cell }}, \lambda_{\text {sheetlet-normal }}\right)$ in diffusion tensor imaging (DTI) and structure tensor synchrotron radiation imaging (STSRI), where abs_ratio $\left(\lambda_{i}, \lambda_{j}\right)=\left\{\lambda_{i} / \lambda_{j}\right.$ if $\lambda_{i} \leq \lambda_{j}$ or $\lambda_{j} / \lambda_{i}$ if $\lambda_{i}>\lambda_{j}$. Eigenvalues are better separated in the STSRI data corresponding to the (i) putative cell and sheetlet orientations: $\left(\lambda_{2} / \lambda_{1}\right)_{\mathrm{DT}}$, mean $=0.69$ versus $\left(\lambda_{3} / \lambda_{1}\right)_{\text {ST, mean }}=0.58$, and (ii) putative sheetlet and sheetlet-normal orientations: $\left(\lambda_{3} / \lambda_{2}\right)_{\text {DT, mean }}=0.86$ versus $\left(\lambda_{2} / \lambda_{1}\right)_{\text {ST, mean }}=0.71$. Eigenvalues are better separated in the DTI data corresponding to putative cell and sheetlet-normal orientations: $\left(\lambda_{3} / \lambda_{1}\right)_{\mathrm{DT} \text {, mean }}=0.60$ versus $\left(\lambda_{3} / \lambda_{2}\right)_{\mathrm{ST}}$, mean $=0.78$.

