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Automated Segmentation of Long and Short Axis
DENSE CMR for Myocardial Strain Analysis Using
Spatio-temporal Convolutional Neural Networks

Additional file 1

1 Additional figures

Figure S1 Quality Control application GUI. Subjects can be loaded and studied one by one. Drop-down menu (1)
selects through the available scans for a given subject, showing sequence name and image indices. Panel (2) is the
main image viewer, showing magnitude (first box) and phase images (two boxes for in-plane directions, last one for
through-plane direction). Users can slide through each frame of the CINE sequence (3). Panel (4) shows manual
labels for LV segmentation previously created with DENSEanalysis for the given subject (showing segmentation name
and associated DENSE data slices). Selection will trigger the red myocardial borders displayed on images in panel (2).
The main processing actions can be done from panel (5). By selecting a slice orientation and clicking apply, users have
the possibility to change which DENSE images are associated with a selected region of interest, as well as indicating
the correct view represented (base, mid, apex, two-chamber, three-chamber, four-chamber). This is delineated on
panel (4) by the green indices and the view name prefix (example on row 5). By only applying these changes to good
quality labels before saving, this process discards undesired manual segmentation and only keeps DENSE slices with
appropriate labeling. Processing a single case (subject) generally takes from several seconds to a minute.
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Figure S2 Failure modes from segmentation inference due to domain shift. Examples of short-axis segmentation
results on cases from the second center. The top and bottom show inference examples with respectively impaired
Hausdorff distance and impaired DICE score, at end-diastole (left column) and end-systole (right column).

2 Impact of converting segmentation maps into contours
As stated in the Methods, segmentation maps obtained from DynU-Net at inference time had to be

post-processed in order to fit into DENSEanalysis. For that purpose, binary masks were transformed

into myocardial contours. To demonstrate that this step has minimal impact on the rest of the

pipeline, we transformed the ground-truth myocardial contours into binary masks and processed

them back to retrieve myocardial contours. We then calculated strain values with DENSEanalysis

from both the original smooth floating-point myocardial contours and those artificially engineered by

reproducing the inference post-processing step, and compared the resulting strain components. The

results are summarized in Table S1 and Figure S3. As we can see, variability for all components

is within the limits of what was found in the multi-center reproducibility study [1], most of the

variability measures being significantly lower than the reported intra-user variability.

Table S1 Agreement measures (Bland-Altman, CoV, ICC)
showing the variability introduced by the inference
post-processing step.

Bias Limits CoV ICC ICC 95% CI

SA
Ecc 0.00 -0.03:0.02 7.2 0.95 0.92-0.97
Err 0.01 -0.04:0.03 9.3 0.99 0.98-0.99

LA
Ell 0.00 -0.01:0.00 2.2 0.99 0.99-1.0
Err 0.01 -0.03:0.01 10.2 0.99 0.97-0.99

CoV: Coefficient of variation, ICC: Intraclass correlation coeffi-
cient, CI: Confidence interval.
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Figure S3 Bland-Altman plots showing the variability introduced by the inference post-processing step. Ecc, Ell
and Err reproducibility when calculating strain with DENSEanalysis from manual floating-point contours either
untouched or processed as a binary mask to reproduce the post-processing myocardium contouring step after deep
learning inference. Left: short-axis. Right: long-axis.

3 Deep learning architecture

The 3D DynU-Net network (see Fig. S4) is composed of cascading layers in two successive paths:

a contracting path for encoding context and a decoding path for localization. Each encoding layer

is made of two sets of convolutional layers with kernel 3 × 3 × 3, instance normalization [2] and a

leaky rectified linear (ReLU) activation function. The first one of the two convolutions has a stride

of 2, acting like a combined max pooling operation and reducing the size of the outputs by a factor

2. The number of feature maps in the first layer is 32, and increases by a factor 2 at each layer to

get a bottleneck of size 1024 and 512, respectively for short-axis and long-axis datasets. For each

decoding layer, a transpose convolution with kernel size 2× 2× 2 and stride 2 is used to upsample

the features maps. This is followed by two sets of convolutional layers with kernel 3×3×3, instance

normalization and a ReLU. To the input of each decoding layer is concatenated the output of the

corresponding encoding layer, acting as skip-connections. To add to that U-Net-like architecture,

deep supervision was implemented to further improve performance. The idea of deep supervision

was first explored by Lee et al. in 2015 [3], and developed further in the case of U-Nets by Zhu et

al. [4]. This forces the features learned by each hidden layer to be more semantically meaningful.

In practice, deep supervision is implemented by adding a few convolutions at each decoding layer

to produce segmentation estimates at different resolutions.
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Figure S4 3D DynU-Net architecture. Like U-Net, the DynU-Net architecture has a contextual encoding path and a
localization decoding path. Each decoding layer produces a segmentation estimate which is interpolated to match the
input volume size. The various estimates are combined in a deep supervision loss (Eq. 4).

The network loss is a composition of Dice and Cross-Entropy losses, and is the weighted sum of

sub-losses acting on the output of each decoding layer. The sub-losses can be expressed with:
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where LDC is the Dice loss, LCE the binary cross-entropy loss, ŷn the output probability estimate

at layer n, y the ground-truth segmentation, xi voxel value number i in image x (probability for

output estimates or binary label for ground-truth segmentation), and M the number of voxels in

the images. The general deep supervision network loss then becomes:
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Data augmentation was performed by randomly applying transformations at each training epoch.

Translations, rotations, Gaussian noise, Gaussian blur, intensity scaling and mirroring in any of

the spatial dimensions were used. Images were padded to 128 × 128 × 80 (x × y × t), and a 4-

fold cross-validation was used as an ensemble strategy (and internally to optimize the training
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hyperparameters). Like in nnU-Net, Stochastic Gradient Descent optimizer (SGD) with momentum

was used for training, with an initial learning rate of 0.01, and a polynomial scheduler rate of (1−
super epoch/nbr super epoch)0.9 [5]. In nnU-Net, images are patched and each epoch corresponds

to 250 iterations with patch batches; we define a ”super-epoch” to be 7 epochs, so that the number

of voxels processed by the network in a super epoch is in the same order of magnitude than the

number of voxels processed by nnU-Net in an epoch. Every 7 epochs, validation performance is

calculated, and the polynomial scheduler decreases the learning rate. The total number of super-

epochs was 500. To reduce overfitting and speed up the training process, an early-stopping strategy

was used based on the average dice score calculated for the validation set, with a patience of 50

super-epochs (training is stopped after 50 epochs if the validation performance does not improve).

Network training was performed on an NVIDIA GeForce RTX 3090 GPU with 24 GB RAM, with

a training time of around 27h for short-axis and 12h for long-axis.

To improve the accuracy of the segmentations during inference, a test-time augmentation strategy

was used. 4 probability map estimates are generated by flipping the input images alongside every

combination of the spatial axes, and the corresponding output maps are flipped back into the

original reference space. The probability estimates are then averaged and thresholded to 0.5 to

produce the final segmentation results.
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