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Left-ventricular shape model

The 75 cases of the Multi-Modal Whole Heart

Segmentation (MMWHS) dataset [1–3] were

manually corrected and mapped with a

shape-adapted physiological parametrization

approximating prolate ellipsoid radial, xr,

circumferential, xc, and longitudinal, xl,

coordinates [4]. Using this parametrization, a

reference mesh was registered onto each geometry,

ensuring preserved mesh connectivity and anatomical

correspondence. Epicardial and endocardial

coordinates were then mapped onto disks with 64

pixel radius in the center of 128x128 pixel images. In

total, 6 channels were obtained by the

three-dimensional coordinates of the two surfaces

(Fig. 2). A variational autoencoder (VAE) [5] was

then trained to reconstruct the surfaces of interest

and, at the same time, identify a suitable low-rank

representation associated with a normal Gaussian

probability distribution for each of the variables.

During training, an Adam optimizer was used to
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minimize the KL divergence and Mean Squared Error

of the reconstruction of the images. From the 6

channels of output from the decoder, epicardial and

endocardial points were reconstructed and, finally, a

volumetric mesh [6] was obtained. An alternative

approach consists of applying Proper Orthogonal

Decomposition as in [6,7] to generate a set of optimal

modes for the linear reconstruction of the dataset. In

this case, however, it will be required to fit

probability distributions from the resulting low-rank

representations which was, instead, not necessary

with a VAE approach.

Cardiac Function Model

We denote as Ω0 the LV reference (end-systolic)

configuration with boundaries Γendo, Γepi, and Γbase

being the endocardium, epicardium and base,

respectively. Let Ω be a deformed configuration. The

deformation gradient can be written as F = ∇u+ I

where u (X, t) is the displacement field from Ω0 to Ω

and I ∈ R3×3 is the identity tensor. The deformation

gradient is split into volumetric and isochoric

components [8] so that F iso = FJ− 1
3 represents the

isochoric deformation and J = det(F ) measures

changes in volume.
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The passive mechanical response of the LV is defined

using the nearly-incompressible anisotropic strain

energy function, Wp [9]:
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where a, b, af , bf , as, bs, afs and bfs are material

coefficients, K is the bulk modulus penalising volume

variations and

I1 = J− 2
3 trC, I4,f = J− 2

3f0 ·Cf0,

I4,s = J− 2
3 s0 ·Cs0 I8,fs = J− 2

3f0 ·Cs0,
(2)

are the invariants of C = F TF and f0 ∈ R3×1 and

s0 ∈ R3×1 are the local fibres and sheet directions of

the heart tissue in the reference configuration Ω0.

The passive stress tensor in the deformed

configuration, σp, is given by the Cauchy stress

tensor as

σp = J−1F TSF . (3)

where S = 2
∂Wp

∂C is the second Piola-Kirchhoff tensor

defined in R3×3.

The total stress in the LV is obtained as the sum of

the contribution of the passive stress, σp, and the

active stress, σa, determined by the myocyte

contraction as

σa = Ta (f ⊗ f + η (s⊗ s+ n⊗ n)) , (4)

where Ta is the stress in the fibre direction, η is a

coefficient in the range [0, 1] that accounts for the

contribution of the stress in the cross fibres directions

and f = Ff0, s = Fs0 and n = Fn0 are,

respectively, the fiber, sheet and fiber-sheet normal

directions in the deformed configuration.

The momentum balance equation, in the reference

configuration, neglecting body forces and inertia

effects, is defined as:



∇0 · P = 0 in Ω0,

PN = −JpendoNF−T dA on Γendo,

PN = JσperiNF−T dA on Γepi,

PN = JσbaseNF−T dA on Γbase,

(5)

where P = J (σp + σa)F
−T ∈ R3×3 is the first

Piola-Kirchhoff stress tensor, N ∈ R3×1 is the surface

normal vector in the reference configuration, pendo is

the pressure generated by the interaction of blood

pool and endocardium, σperi and σbase defines the

effect of the pericardium and the traction stress at

the base, respectively. In our model, the pericardium

was modelled with linear normal springs of modulus

Kp so that σperi = Kp (x)u ·N [10]. At the base,

σbase represents the effect of the left atrium which

was not included in our model. This boundary

condition was modelled with linear springs with

modulus Kb and rest-configuration at distance uref

from the base so that σbase = Kb (x) (u− uref ) ·N .

The value of Ta (4) is usually determined from

electrophysiological models [11–13]. As in the work

of [13], myocite activation time were computed by

solving an Eikonal model specifying an anisotropic

diffusion tensor. This was defined as

Dhealthy = dff0 ⊗ f0 + dss0 ⊗ s0 + dnn0 ⊗ n0,

where df , ds and dn are the conduction coefficients

along the fiber, sheet and fiber-sheet normal

directions, respectively. The effect of the Purkinje

fibre network was approximated by prescribing four

entry points at the endocardial surface for the

propagation of the activation wave. Alternatively, in

our model, it is possible to specify uniform activation

of the myocardium. Activation times were then used

as a fixed parameter in the electromechanical model
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to define the actuation of each point using a double

Hill model [14,15].

LV micro-structure was defined using linear

transmural laws as in [6]. The particularization of the

model to physiological and pathological conditions

was obtained with the appropriate selection of the LV

initial reference shape, tissue properties and systemic

circulation parameters. The first step was the

sampling of the anatomy from the corresponding

cluster. Then, material properties, fiber orientations

and maximum active stress, Ta, were selected to

obtain the target cardiac function. Reference healthy

values for the passive tissue response (1) were taken

from [16]. Lastly, the diffusion coefficient along fiber

directions was set to values in a similar range to those

previously reported in the literature [16]. Specifically,

df , was set to 0.4 while ds and normal dn, were set to

0.2 and 0.1, respectively. Previous works on the

personalization of cardiac models to DCM and HCM

cases have shown that these are characterised by

stiffer material coefficients, i.e a, as, af , afs were

between 5 and 10 times larger than in the normal

case, and smaller physiological strains [17].

Local tissue defects, such as scars, were simulated by

varying geometry and material properties in selected

regions of the anatomy. In our work, scar regions

were identified by an ellipse defined by

(xl − xl,0)
2

∆l2
+

(xc − xc,0)
2

∆c2
< 1, (6)

where xl and xc are mesh points longitudinal and

circumferential parametric coordinates, xl,0 and xc,0

are the longitudinal and circumferential parametric

coordinates of the center of the ellipse, and ∆l and

∆c are the half lengths of the axis in the longitudinal

and circumferential directions, respectively. All points

in the scar were associated with a scar parameter

sp =
(xl−xl,0)

2

∆l2 +
(xc−xc,0)

2

∆c2 , while all external points

were set with sp = 0.0. This scar parameter was used

to blend target thickness reduction, ht, target

material stiffening, p, and a target active stress

reduction percentage, ∆Ta, with those of the healthy

tissue. In particular, hp = (1− sp)ht is the local

values of thickness reduction within the scar,

ms = 1 + (1− sp)p is the local material scaling,

∆Ta,p = (1− sp)∆Ta is the local reduction of active

stress and Dp = Dhealthy(1− sp) is the local diffusion

tensor for the Eikonal problem. Eq.s (5) were solved

in FEniCs [18,19] using linear tetrahedral elements.

Endocardial pressure was computed by coupling the

ventricular model to a simplified lumped-parameter

model of systemic circulation as described in [6].

After the simulation, the end-diastolic configuration

was identified and used as reference for the

calculation of all simulated displacements. This step

was used to adhere to the clinical convention where

the starting phase is the end-diastolic one.

Important ground truth metrics in the development

of imaging protocols are physiological strains. Given

a deformation field u from the end-diastolic reference

configuration ΩED to a deformed state Ω, the

Lagrangian strain tensor was defined as

E = 1
2 (C − I). The physiological strain, ei in one of

the physiological directions vi was obtained as

ei = vT
i Evi. In our work we considered strains in the

radial, longitudinal and circumferential directions

defined by the physiological parametrization, as er, el

and ec, respectively.

Image background generation

To generate proper background for each phase, the

initial image generated from XCAT was first scaled

so that the LV principal axis matched those of the

mesh from the biophysical model, re-sampled to the

original target resolution and translated so that the

mitral valve plane of the LV coincided with the basal

plane of the LV mesh. Image labels were first warped

according to the displacement fields extracted from
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XCAT. These included the displacements of the right

ventricle and atria and, if requested, the motion field

from breathing. In the latter, since the LV apex

position during the beating cycle was zero without

breathing displacement, the biophysical mesh was

translated according to the movement of the apex

position. Then, the LV masks were obtained from the

biophysical model for each 2D planes of the XCAT

image stack. Epicardial and endocardial contours of

both masks (from LV mesh and XCAT) were fitted

with a spline function and sampled at 60 equally

spaced positions. From the corresponding points in

the contours, the in-plane warping displacements of

points of the XCAT masks were computed and

interpolated on the full image constraining to zero

the displacement of the boundary points of the

image. Image labels were then warped accordingly.

The displacement fields computed in these steps were

also used to warp the tissue properties of the mask

labels of the first cardiac phase. In this way we

preserved the consistency of the tissue information

over the cardiac cycle.

Tissue properties definition

The CMRGenNet was based on the StyleGAN2 with

Adaptive Discriminator Augmentation (ADA)

( [20,21]) and trained on the ACDC dataset using an

Adam optimiser [22] with learning rate of 2.5 ×10−5

for the mapping network and 2.5 ×10−3 for the

synthesis network as well as the discriminator (Fig.

3). All activation functions were leaky ReLU with

negative slope 0.2. The dataset comprised short-axis

CMR images of 20 healthy and 80 pathological

patients. The resolution varied from 0.7 mm to 1.9

mm and slice thickness was between 5 mm and 10

mm. Therefore, the images were transformed into a

standardised representation before being used as

training data. Each 2D slice was resampled to an

isotropic in-plane resolution of 1.0 mm, centred

slice-wise around the heart and rotated volume-wise

such that the centroids of the two ventricular blood

pools were always on the horizontal axis. Images were

then cropped to the target resolution of 256 × 256

around the heart centroid. As a final step, the

intensity of each 2D slice was normalised to the range

[0; 255]. The 2D images were split for training and

testing with a ratio of 0.8:0.2, respectively. After

training, the model was used to generate 30 images

(20 for training and 10 for testing) which were

manually labeled with 10 anatomical classes (see

Fig.3 for details on the classes). The labelled images

were then used to train a second branch of the

network predicting the corresponding multi-tissue

segmentations for each synthesized image. The

semantic segmentation branch was trained with the

Adam optimizer with learning rate 10−3. Training

was run for 500 epochs with a batch size of 2.

The MultiClassNet was trained for 10 epochs using

Adam with default parameters, learning rate of 10−3

and Dice loss as training objective. Synthetic images

from the CMRGenNet were augmented with random

rotations, image flips, shearing, distortion, zooming

and brightness and contrast transformations using

the Augmentor package [23]. The MultiClassNet was

then used to segment end-systolic (ES) and

end-diastolic (ED) images from the ACDC dataset.

Initial tissue property values for PD, T1 and T2 were

initialized with the default values in MRXCAT [24].

The per-pixel signal was then computed with the

analytic closed-form expression of the balanced

steady-state free precession (bSSFP) [24]. As the

signal model is differentiable, a per-pixel

minimization, using gradient descent, was performed

to find the appropriate PD, T1 and T2 values that,

for the bSSFP signal model, produced the target

signal from the image. Initializing the multi-class

segmentation masks using the default values from
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MRXCAT determined a reasonable initial starting

point that allowed the optimization to quickly

converge to feasible values, i.e. values that were both

close to the known organ tissue parameters, and also

producing the intensity variation seen in the target

image. Various prior knowledge could also be

leveraged by suitably regularising this optimisation

process. Here we regularised the optimisation by

strongly penalising variations in PD from the initial

values, while using a weak penalisation for variations

in T1 and T2.

Finally, the TextNet was trained using the

image-tissue values pairs obtained in the previous

step with a 0.8:0.2 split for training, validation and

testing, respectively. We used an using an Adam

optimiser with learning rate of 1 ×10−3.
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10. Pfaller, M.R., Hörmann, J.M., Weigl, M., Nagler, A., Chabiniok, R.,

Bertoglio, C., Wall, W.A.: The importance of the pericardium for

cardiac biomechanics: from physiology to computational modeling.

Biomechanics and Modeling in Mechanobiology 18, 503–529 (2019).

doi:10.1007/s10237-018-1098-4

11. Roth, B.J., Wikswo, J.P.: A bidomain model for the extracellular

potential and magnetic field of cardiac tissue. IEEE Transactions in

Biomedical Engineering 33, 467–469 (1986).

doi:10.1109/TBME.1986.325804

12. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R.M.: A

comparison of monodomain and bidomain reaction-diffusion models for

action potential propagation in the human heart. IEEE Transactions in

Biomedical Engineering 43, 2425–243 (2006).

doi:10.1109/TBME.2006.880875

13. Neic, A., Campos, F.O., Prassl, A.J., Niederer, S.A., Bishop, M.J.,

Vigmond, E.J., Plank, G.: Efficient computation of electrograms and

ECGs in human whole heart simulations using a reaction-eikonal

model. Journal of Computational Physics 346, 191–211 (2017).

doi:10.1016/j.jcp.2017.06.020

14. Augustin, C.M., Gsell, M.A.F., Karabelas, E., Willemen, E., Prinzen,

F., Lumens, J., Vigmond, E.J., Plank, G.: Validation of a 3D-0D

closed-loop model of the heart and circulation – Modeling the

experimental assessment of diastolic and systolic ventricular properties

(2020). 2009.08802

15. Niederer, S.A., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P.,

Rhode, K.S., Rinaldi, C.A., Razavi, R., Smith, N.P.: Length-dependent

tension in the failing heart and the efficacy of cardiac

resynchronization therapy. Cardiovascular research 89(2), 336–343

(2011). doi:10.1093/cvr/cvq318

16. Peirlinck, M., Sack, K.L., De Backer, P., Morais, P., Segers, P., Franz,

T., De Beule, M.: Kinematic boundary conditions substantially impact

in silico ventricular function. International Journal for Numerical

Methods in Biomedical Engineering 35(1), 3151 (2019).

doi:10.1002/cnm.3151

17. Miller, R., Kerfoot, E., Mauger, C., Ismail, T.F., Young, A.A.,

Nordsletten, D.A.: An implementation of patient-specific biventricular

mechanics simulations with a deep learning and computational

pipeline. Frontiers in Physiology 12, 1398 (2021).

doi:10.3389/fphys.2021.716597

18. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg,

A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The fenics

project version 1.5. Archive of Numerical Software 3(100) (2015).

doi:10.11588/ans.2015.100.20553

http://dx.doi.org/10.1016/j.media.2016.02.006
http://dx.doi.org/10.1260/2040-2295.4.3.371
http://dx.doi.org/10.1109/TMI.2010.2047112
http://dx.doi.org/10.1016/j.media.2013.02.008
http://dx.doi.org/10.48550/arXiv.1312.611
http://dx.doi.org/10.1016/j.media.2021.102066
http://dx.doi.org/10.1007/s10237-019-01182-w
http://dx.doi.org/10.1016/S0020-7683(00)00215-8
http://dx.doi.org/10.1098/rsta.2009.0091
http://dx.doi.org/10.1007/s10237-018-1098-4
http://dx.doi.org/10.1109/TBME.1986.325804
http://dx.doi.org/10.1109/TBME.2006.880875
http://dx.doi.org/10.1016/j.jcp.2017.06.020
http://arxiv.org/abs/2009.08802
http://dx.doi.org/10.1093/cvr/cvq318
http://dx.doi.org/10.1002/cnm.3151
http://dx.doi.org/10.3389/fphys.2021.716597
http://dx.doi.org/10.11588/ans.2015.100.20553


Buoso et al. Page 6 of 11

19. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of

Differential Equations by the Finite Element Method. Springer, ???

(2012). doi:10.1007/978-3-642-23099-8

20. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.:

Analyzing and Improving the Image Quality of StyleGAN. arXiv

(2019). doi:10.48550/ARXIV.1912.04958

21. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.:

Training Generative Adversarial Networks with Limited Data. arXiv

(2020). doi:10.48550/ARXIV.2006.06676

22. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization.

arXiv (2014). doi:10.48550/ARXIV.1412.6980

23. Bloice, M., Roth, P., Holzinger, A.: Biomedical image augmentation

using Augmentor. Bioinformatics 35(21), 4522–4524 (2019).

doi:10.1093/bioinformatics/btz259

24. Wissmann, L., Santelli, C., Segars, W.P., Kozerke, S.: Realistic

numerical phantoms for cardiovascular magnetic resonance. Journal of

Cardiovascular Magnetic Resonance 16(1) (2014).

doi:10.1186/s12968-014-0063-3

http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.48550/ARXIV.1912.04958
http://dx.doi.org/10.48550/ARXIV.2006.06676
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.1093/bioinformatics/btz259
http://dx.doi.org/10.1186/s12968-014-0063-3



