

Additional file 1: Figure S1

Formation of the Cu(II)-A β complex. (A) Peptide concentration in the supernatant of

reaction mixtures containing $A\beta_{1-40}$ (50 µM) with or without Cu(II) (50 µM). (B) Effect of Cu(II) on the formation of A β fibrils. The amyloid fibril formation of $A\beta_{1-40}$ in the presence of Cu(II) (50 µM) was determined using the thioflavin T (ThT) fluorescence assay. Fibrillar $A\beta_{1-40}$ ($A\beta f$, 50 µM) was used as a positive conference. Data are expressed as the means \pm SEM of three independent experiments. Significance was tested by Student's *t* test. ***P* < 0.01 vs $A\beta$ (A) or $A\beta f$ (B); [#]*P* < 0.05 vs $A\beta$ (B). (C) Dot blot analysis of $A\beta_{1-40}$ and Cu(II)- $A\beta_{1-40}$ (with 1:1 or 1:2 of $A\beta$: Cu(II) molar ratios) at a peptide concentration of 10 µM. $A\beta_{1-40}$ was incubated in 20 mM Hepes buffer (containing 153 mM NaCl; pH 6.6) in the presence or absence of Cu(II) for 24 h at 37 °C. Oligomeric $A\beta_{1-40}$ ($A\beta$ o) was used as a positive control.