
Research Article

Dietary fats promote functional and structural changes in the median eminence blood/spinal fluid interface - The protective role for BDNF

Albina F. Ramalho¹, Bruna Bombassaro¹, Nathalia R. Dragano¹, Carina Solon¹, Joseane Morari¹, Milena Fioravante¹, Roberta Barbizan¹, Licio A. Velloso^{1*}, Eliana P. Araujo²

Supplementary Data

Supplementary Figure 3. Immunofluorescence staining of markers of the median eminence blood-brain barrier and markers of glial cells. Immunofluorescence staining using primary antibodies against IGFBP2 (green), GFAP (red) (A) and IBA1 (red) (B). Specimens were obtained from bregma-anteroposterior -2,06 to -2,18 from mice fed on a high-fat diet (HFD) and treated with either a pre-immune antiserum (IgG) or with an anti-BDNF antibody (BDNF). The images are representative of four independent experiments. 3v, third ventricle; BDNF, brain-derived neurotrophic factor IGFBP2, insulin-like growth-factor binding protein 2; GFAP, glial fibrillary acidic protein. IBA1, ionized calcium-binding adapter molecule-1.

