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1 Adjusting for individuals who refuse testing

Ideally, in a disease prevalence estimation survey, all sampled individuals will consent to test, either as an

individual or in a pool. However, in practice, we anticipate that a certain proportion of the population, q3,

will refuse testing altogether. Unless we can assume test status is missing completely at random, accounting

for this missingness induced by test refusal is key to constructing an unbiased estimator of prevalence. As

previously discussed, assuming data is missing at random may be a poor assumption in such settings. A

more reasonable assumption might be that that those who refuse testing are more similar to those who

consent to pooled testing than they are to those who consent to individual testing. With this motivation, we

propose a weight-class adjustment (also called response propensity weighting) to the estimator to improve

the precision of population prevalence estimates [1].

First, we discuss weight-class adjustments without using a pooled testing design. If we have obtained a

simple random sample of the population, the simplest estimator for the prevalence is the number of disease

positive individuals in a sample who consent to testing divided by the total number of consenters. This

estimator relies on the assumption that those who consent to test are representative of the entire population,

In order to adjust the prevalence estimator for non-consent, we divide the sample of size n into j different

strata, j = 1, ..., J . Denote the number of individuals sampled in the jth stratum as nj , and assume that

mj individuals in stratum j consent to testing. We can weight each consenting individual in the sample by

the inverse probability that they consent to testing. This method of propensity score weighting produces

an unbiased estimator of prevalence when consenters and non-consenters within stratum j are alike with

respect to hiv status (that is, there are no unmeasured confounders within stratum j). Using propensity

score weighting, the adjusted prevalence estimate becomes: p̂ =
∑
j (nj/n)p̂j .

Propensity weighting adjustments have been discussed frequently in the literature and have disadvantages
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including inflating the variance when the weights are large [2, 3, 4]. Such a situation would occur when

individuals in a given stratum are very unlikely to participate in a survey. Collapsing strata can be effective

in reducing the impact of sparse data and large weights within a stratum if such a situation occurs. Note

that rather than dividing the data into strata, propensity scores can be calculated using logistic regression

and weights can be constructed based on predicted probabilities from a logistic regression, as employed in

[5].

This propensity weighting framework extends naturally to the combined prevalence estimator, assuming

that we can construct homogeneous pools based on the j strata. Construction of homogeneous pools is

the primary challenge of implementing the weight-class adjustment correction. Choosing appropriate strata

requires balancing the need for a sufficient number of pooled testers within each stratum to maintain con-

fidentiality and obtain valid prevalence estimates as well as the need to incorporate a sufficient amount of

information about the testers versus non-testers. Assuming we can construct such strata, we can use the

weight class adjustment in two different ways: 1) weight everyone in the sample who consents to test by

the inverse probability of testing within their respective stratum, or 2) weight only the pooled testers by

the inverse probability of testing as a pooled tester, conditional on not testing as an individual. The first

method of weight class adjustment assumes that non-testers are similar to testers (pooled or individual)

within strata with respect to hiv status, whereas the second method assumes that non-testers are similar to

pooled testers within strata. To choose the appropriate adjustment method, reasons for not consenting to

test should be obtained from the sample when possible. For instance, if most people will not test because

they dislike having blood drawn, then the first method might be more plausible. If hesitance of the pooled

testers and non-testers is caused by suspicion of hiv positive status, the second method is more reasonable.

Simpler estimators could also be proposed without employing a weight-class adjustment, which may be

more feasible in practice. For instance, one could assume the prevalence of hiv in the non-testers is equal to

the prevalence within the pooled testing population and suggest p̂ = p̂1q̂1 + p̂2(q̂2 + q̂3), which is potentially a

better estimator than p̂T for the prevalence in the population. Lastly, we could assume a linear trend exists

between p1, p2, and p3, and define a prevalence estimator as p̂ = p̂1q̂1 + p̂2q̂2 + p̂3q̂3 using linear extrapolation

(e.g. p̂i = a+ bi). These estimators need to be tested in practice before we can contrast their merits.
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2 Extending the estimator for imperfect sensitivity and speci-

ficity

Let φ and ψ represent test sensitivity and specificity, respectively. The probability that an individual

consenter tests positive is p1φ+ (1− p1)(1− ψ). We assume that there is no dilution effect, and sensitivity

and specificity are the same for pools as for individual tests. The probability that a pool tests positive is

(1− (1−p2)k)φ+(1−p2)k(1−ψ). Note that we also make the relatively mild assumption that φ+ψ−1 > 0.

It follows that p̂1,φ,ψ = (X1/Y1 + 1 − ψ)/(φ + ψ − 1) and V ar(p̂1,φ,ψ) = V ar(p̂1)/(φ + ψ − 1)2. Define p̃z

as Z/np when using the standard pooled prevalence estimator; and as (Z + (k − 1)/2k)/(np + (k − 1)/2k)

when the Burrows correction is used. In the pooled setting,

p̂2,φ,ψ = 1−
(

φ− p̃z
φ+ ψ − 1

)1/k

when 1 − ψ ≤ p̃z ≤ φ; p̂2,φ,ψ = 0 when 0 ≤ p̃z ≤ 1 − ψ; and p̂2,φ,ψ = 1 when φ ≤ p̃z ≤ 1. Also, asymptotic

normality for p̂2,φ,ψ holds, where V ar(p̂2,φ,ψ) = V ar(p̂2)/(φ+ ψ − 1)2. Therefore, when the sensitivity and

specificity of a test are known, they are easily incorporated into the framework of the individual and pooled

testing prevalence estimator, as p̂T,φ,ψ = q1p̂1,φ,ψ+q2p̂2,φ,ψ and (p̂T,φ,ψ−pT )/( ˆV arφ,ψ(p̂T,φ,ψ))1/2 ∼ N(0, 1),

where V arφ,ψ(p̂T,φ,ψ) is simple to calculate by using the same form of the variance as p̂T , but substituting

V1/(φ+ψ−1)2, V2/(φ+ψ−1)2 for V1, V2 (see Appendix 5 in Additional file 1). Sample variance is calculated

by substituting p̂1,φ,ψ, p̂2,φ,ψ for p̂1, p̂2.

3 Notation for statistical derivations

Let Y = (Y1, Y2, Y3) be a random variable classifying individuals by their testing consent choices, Y ∼

Multinom(n, r1, r2, r3), where n = Y1 + Y2 + Y3. Specifically, Y1 reflects the number who consent to

individual testing; Y2 reflects the number who do not consent to individual testing but consent to pooled

testing; and Y3 reflects the number who do not consent to test at all. Let X1 number of hiv positive

persons who consent to individual test, X2 number of hiv positive persons who consent to pooled test,

and X3 = number of hiv positive persons who do not consent to test. We model Xi|Yi ∼ Bin(Yi, pi), i =

{1, 2, 3}. We define q1 = r1/(r1 + r2) and q2 = r2/(r1 + r2). Restricting to the testing population only,

(Y1, Y2) ∼Multinom(m, q1, q2) or equivalently Y1 ∼ Bin(m, q1), where m is the total number of individuals
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who consent to test in the sample (pooled or individual).

A natural estimator for pT is p̂T = p̂1q̂1 + p̂2q̂2, where q̂1 = Y1/m, q̂1 = Y2/m, p̂1 = X1/Y1, and

p̂2 = 1 − (1 − p̂z)1/k. Conditional on Y2, the asymptotic variance of
√
Y2p̂2 is (1 − p2)2((1 − p2)−k − 1)/k

[6]. Note that q̂1, q̂2, p̂1, and p̂2 are unbiased estimators of q1, q2, p1, and p2 respectively, as m → ∞. We

assume q1, q2, p1, and p2 are non-zero.

4 Asymptotic unbiasedness of p̂T

E(p̂T ) = EY (E(Y1

m
X1

Y1
+ Y2

m p̂2|Y ))

= EY (Y1

m p1 + Y2

m p2) as m→∞ because p̂2 is unbiased asymptotically

= pT as m→∞

5 Derivation of asymptotic variance of p̂T

Denote V1 = p1(1− p1) and V2 = 1
k (1− p2)2((1− p2)−k − 1).

V ar(p̂T ) = E(V ar(p̂T |Y ))︸ ︷︷ ︸
a

+V ar(E(p̂T |Y ))︸ ︷︷ ︸
b

a : E(V ar(p̂T |Y )) = E(V ar(X1

m + Y2

m p̂2|Y ))

= E(V ar(Y1

m
X1

Y1
|Y ) + Cov(Y1

m
X1

Y1
, Y2

m p̂2|Y ) + V ar(Y2

m p̂2|Y ))

= E(
Y 2
1

m2V ar(p̂1|Y )) + 0 + E( Y2

m2V ar(
√
Y2p̂2|Y ))

= 1
m (E(Y1

m V1) + E( Y2

m2V2)) as m→∞

= 1
m (q1V1 + q2V2) as m→∞

b : V ar(E(p̂T |Y )) = V ar(Y1

m p1 + Y2

m p2) as m→∞

= V ar(Y1p1
m ) + 2Cov(Y1p1

m , Y2p2
m ) + V ar(Y2p2

m ) as m→∞

= 1
m

(
p21q1(1− q1)− 2p1p2q1q2 + p22q2(1− q2)

)
as m→∞

= 1
m (q1q2(p21 − 2p1p2 + p22)) as m→∞

V ar(p̂T ) = 1
m (q1V1 + q2V2 + q1q2(p1 − p2)2) as m→∞
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6 Sketch of asymptotic distribution of p̂T

Again denote V1 = p1(1− p1) and V2 = (1/k)(1− p2)2((1− p2)−k − 1).

As m → ∞,
√
mq1p̂1 ∼ N(p1, V1) and

√
mq2p̂2 ∼ N(p2, V2);

√
mq1p̂1 and

√
mq2p̂2 are independent as

m→∞.

Additionally, as m→∞,

√
m(q̂′1 − q1, q̂′2 − q2)T ∼ N(0,

 q1(1− q1) q1(1− q1)

q1(1− q1) q1(1− q1)

 [7].

Rewrite:

√
m(p̂T − pT ) =

√
m(p̂1(q̂′1 − q1) + p̂2(q̂′2 − q2))︸ ︷︷ ︸

a

+
√
q1
√
mq1(p̂1 − p1) +

√
q2
√
mq2(p̂2 − p2))︸ ︷︷ ︸

b

Note that, as m→∞, a:

√
m(p1(q̂1 − q1) + p2(q̂2 − q2)) ∼ N(0, q1(1− q1)(p21 − 2p1p2 + p22)).

We know that p̂1
p→ p1 and p̂2

p→ p2. Then, as m→∞,

√
m(p̂1(q̂1 − q1) + p̂2(q̂2 − q2)) ∼ N(0, q1(1− q1)(p21 − 2p1p2 + p22)).

and b:

√
q1
√
mq1(p̂1 − p1) +

√
q2
√
mq2(p̂2 − p2) ∼ N(0, q1V1 + q2V2).

Asymptotically,
√
q1
√
mq1(p̂1−p1)+

√
q2
√
mq2(p̂2−p2) and

√
m(p̂1(q̂1−q1)+p̂2(q̂2−q2)) are independent.

Therefore,

√
m(p̂T − pT ) ∼ N(0, VpT ) as m→∞

where VpT = q1V1 + q2V2 + q1q2(p1 − p2)2.
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7 Derivation of finite sample bias in pT

E(p̂T ) = EY (E(X1

m + Y2

m p̂2|Y ))

= pT + E
(
Y2

m
k−1

2(1−p2)var(p̂2)
)

+O

(
(mk )−

3
2

)
≈ pT + k−1

2mk (1− p2)1−k(1− (1− p2)k) +O((mk )−
3
2 )
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