Appendix 1

Hazard ratios for overall survival on multivariate analysis for patients in the Surveillance, Epidemiology, and End Results (SEER) database and the National Oncology Data Alliance (NODA) from 1995-2006 with variates common to both datasets.

Table 3 Hazard Ratios for Overall Survival

		SEER			NODA		
		p -value	H.R.	95\% C.I.	p-value	H.R.	95\% C.I.
T stage	T1	<0.001	--		<0.001	--	
	T2	<0.001	1.15	[1.12, 1.18]	<0.001	1.21	[1.16, 1.27]
	T3	<0.001	1.49	[1.41, 1.57]	<0.001	1.42	[1.30, 1.54]
	T4	<0.001	2.42	[2.14, 2.74]	<0.001	2.41	[1.93, 3.01]
Age	(Continuous)	<0.001	1.05	[1.05, 1.06]	<0.001	1.05	[1.04, 1.05]
Marital Status	Unmarried		--			--	
	Married	<0.001	0.76	[0.74, 0.78]	<0.001	0.81	[0.77, 0.86]
Grade	(1) Well Differentiated	<0.001	--		<0.001	--	
	(2) Moderately Differentiated	0.516	1.02	[0.96, 1.09]	0.337	1.05	[0.95, 1.15]
	(3) Poorly Differentiated	<0.001	1.36	[1.27, 1.45]	<0.001	1.27	[1.16, 1.40]
	(4) Anaplastic	<0.001	1.88	[1.55, 2.28]	0.010	1.58	[1.12, 2.24]

Appendix 2

From Lin et al, "The proportional hazards regression (Cox, 1972) specifies that the hazard functions of T conditional on the sets of covariates (X, Z, U) and (X, Z) are, respectively,

$$
\lambda(t \mid X, Z, U)=\lambda_{o}(t) \cdot \exp (\beta \cdot X+\gamma X \cdot U+\theta \cdot Z)
$$

and

$$
\lambda(t \mid X, Z, U)=\lambda_{o}^{*}(t) \cdot \exp \left(\beta^{*} \cdot X+\theta^{*} \cdot Z\right)
$$

where $\lambda_{o}(\cdot)$ and $\lambda_{o}^{*}(\cdot)$ are arbitrary baseline hazard functions, and ($\beta, \gamma 0, \gamma 1, \theta$) and (β^{*}, θ^{*}) are unknown regression parameters." X is the variate of interest, in this case dose, Z is a vector of other measured covariates, and U is an unmeasured confounder. β^{*} and θ^{*} represent the estimated parameter values determined in the absence of knowledge of the confounder. We assume that X and U take the value $(0,1)$, where dose $\mathrm{X}=0$ is the referent group, 1 is a nonreferent dose group, and $\mathrm{U}=0$ and 1 represent the absence or presence of the confounder, respectively. We assume $\gamma 0=\gamma 1=\gamma$, meaning that the effect of the confounder is independent of dose.

Lin goes on to show that

$$
\beta \approx \beta^{*}-\ln \left(\frac{e^{\gamma} P_{1}+\left(1-P_{1}\right)}{e^{\gamma} P_{0}+\left(1-P_{0}\right)}\right)
$$

where P_{0} and P_{1} are the prevalences of the confounder in the 0 and 1 dose groups respectively. Assuming equality, it can be shown that

$$
\frac{H R_{\text {dose }}}{H R_{\text {dose }}^{*}}=\frac{H R_{\text {confounder }} P_{0}+\left(1-P_{0}\right)}{H R_{\text {confounder }} P_{1}+\left(1-P_{1}\right)}
$$

If we assume that confounding accounts for all the dose response, then $H R_{\text {dose }}=1$. For $P_{1}=P_{\text {high }}$ and $P_{0}=P_{\text {low }}$, we obtain equation (1) in the text.

