Appendix 1

Hazard ratios for overall survival on multivariate analysis for patients in the Surveillance, Epidemiology, and End Results (SEER) database and the National Oncology Data Alliance (NODA) from 1995-2006 with variates common to both datasets.

		SEER			NODA		
		p-value	H.R.	95% C.I.	p-value	H.R.	95% C.I.
T stage	T1	<0.001			<0.001		
	Τ2	<0.001	1.15	[1.12, 1.18]	<0.001	1.21	[1.16, 1.27]
	ТЗ	<0.001	1.49	[1.41, 1.57]	<0.001	1.42	[1.30, 1.54]
	Τ4	<0.001	2.42	[2.14, 2.74]	<0.001	2.41	[1.93, 3.01]
Age	(Continuous)	<0.001	1.05	[1.05, 1.06]	<0.001	1.05	[1.04, 1.05]
Marital Status	Unmarried						
	Married	<0.001	0.76	[0.74, 0.78]	<0.001	0.81	[0.77, 0.86]
Grade	(1) Well Differentiated	<0.001			<0.001		
	(2) Moderately Differentiated	0.516	1.02	[0.96, 1.09]	0.337	1.05	[0.95, 1.15]
	(3) Poorly Differentiated	<0.001	1.36	[1.27, 1.45]	<0.001	1.27	[1.16, 1.40]
	(4) Anaplastic	<0.001	1.88	[1.55, 2.28]	0.010	1.58	[1.12, 2.24]

Table 3 Hazard Ratios for Overall Survival

Appendix 2

From Lin et al, "The proportional hazards regression (Cox, 1972) specifies that the hazard functions of T conditional on the sets of covariates (X, Z, U) and (X, Z) are, respectively,

$$\lambda(t|X,Z,U) = \lambda_o(t) \cdot \exp(\beta \cdot X + \gamma X \cdot U + \theta \cdot Z)$$

and

$$\lambda(t|X,Z,U) = \lambda_{0}^{*}(t) \cdot \exp(\beta^{*} \cdot X + \theta^{*} \cdot Z)$$

where $\lambda_o(\cdot)$ and $\lambda_o^*(\cdot)$ are arbitrary baseline hazard functions, and $(\beta, \gamma 0, \gamma 1, \theta)$ and (β^*, θ^*) are unknown regression parameters." X is the variate of interest, in this case dose, Z is a vector of other measured covariates, and U is an unmeasured confounder. β^* and θ^* represent the estimated parameter values determined in the absence of knowledge of the confounder. We assume that X and U take the value (0,1), where dose X=0 is the referent group, 1 is a nonreferent dose group, and U=0 and 1 represent the absence or presence of the confounder, respectively. We assume $\gamma 0 = \gamma 1 = \gamma$, meaning that the effect of the confounder is independent of dose.

Lin goes on to show that

$$\beta \approx \beta^* - ln \left(\frac{e^{\gamma} P_1 + (1 - P_1)}{e^{\gamma} P_0 + (1 - P_0)} \right)$$

where P_0 and P_1 are the prevalences of the confounder in the 0 and 1 dose groups respectively. Assuming equality, it can be shown that

$$\frac{HR_{dose}}{HR_{dose}^{*}} = \frac{HR_{confounder}P_{0} + (1 - P_{0})}{HR_{confounder}P_{1} + (1 - P_{1})}$$

If we assume that confounding accounts for all the dose response, then $HR_{dose}=1$. For $P_1=P_{high}$ and $P_0=P_{low}$, we obtain equation (1) in the text.