
This supplementary appendix complements the Materials & Methods sec-
tion of the article “Deformable image registration for adaptive radiotherapy
with guaranteed local rigidity constraints”. It contains additional mathemati-
cal descriptions of the presented deformable registration framework.

A

A.1 Registration Framework

Let R : R3 → R denote the fixed reference image and T : R3 → R the moving
template image with compact support in domain Ω ⊂ R3. The goal of image
registration is to find a plausible transformation y : Ω → R3 that encodes
the spatial correspondence between the two images R and T . In variational
approaches, this is modeled by an objective function J which typically consists
of a distance measure D describing image similarity and a regularizer S which
penalizes implausible deformations [1]. Here, the transformation y is determined
by solving the optimization problem

J (y) = D(R, T (y)) + αS(y)→ min, (1)

where α > 0 balances between image similarity and deformation regularity of y
and T (y) := T ◦ y denotes the deformed template image.

Distance Measure Given the CBCT to CT registration problem, the nor-
malized gradient fields distance measure D is chosen which is suitable for multi-
modal registration. This distance measure is based on the assumption that in
two given images, regardless of modality, object edges and boundaries are al-
ways represented by intensity changes, i.e. image gradients. Furthermore it is
easy to interpret and can be implemented efficiently and fully parallelized [2, 3].
With ‖ · ‖ε :=

√
〈·, ·〉+ ε2, we define the NGF distance measure as

D(R, T (y)) =
1

2

∫
Ω

1−
(
〈∇T (y),∇R〉+ τ%

‖∇T (y)‖τ‖∇R‖%

)2

dx,

where τ, % ≥ 0 are so-called edge parameters, that allow for image modality
specific filtering between noise and relevant image gradients.

Regularizer The second term in the objective function (1) is a regularizer.
Here, curvature regularization is used [4]. With the decomposition y(x) =
x+ u(x), the curvature regularizer is given by

S(y) :=
1

2

∫
Ω

‖∆ux‖2 + ‖∆uy‖2 + ‖∆uz‖2 dx,

where “∆” denotes the Laplace operator and ux, uy, uz are the components of
the displacement in x-, y- and z-direction, respectively.
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A.2 Local Rigidity

The framework described in Section A.1 yields a non-linear deformation y that
optimizes image similarity based on image gradients and deformation regularity
based on second order derivatives. However, these deformations do not incorpo-
rate any additional knowledge about special anatomical deformation properties.

Therefore, as proposed in [5] an additional constraint is added to the op-
timization problem in (1). Given a segmentation of a stiff structure in the
planning CT, we define the domain of the segmentation as Σ ⊂ Ω. To model
the stiff behavior of this structure, we incorporate a constraint which enforces
rigid (i.e. rotational and translational) deformations on this sub-domain. Writ-
ing the local rigidity constraint as C(y) = 0 and assuming that it is active on Σ
leads to

J (y) = D(R, T (y)) + αS(y)→ min, (2)

s.t. C(y)(x) = 0 for all x ∈ Σ.

As there can be several rigid structures acting independently of each other, in
general there will be multiple disjoint sub-domains Σk, k = 1, . . . ,M . To restrict
structures to rigid deformations only, the constraint term C(y) is formulated as

C(y)(x) = C(y, θk, bk)(x)

= y(x)− (Q(θk)x+ bk) = 0 (3)

for all x ∈ Σk and k = 1, . . . ,M,

where Q defines a three-dimensional rotation matrix, depending on the rota-
tion angles θ = (α, β, γ) and the components of the translation vector b =
(b1, b2, b3)>.

Constraints elimination Using the formulation in (3), constraints in the
optimization problem (2) can be eliminated by substituting the deformation y.
Instead of directly optimizing y, all the points that are in some Σk are deformed
in terms of a rigid deformation and its parameters, yielding

y =


y0

y1

...
yM

 =


y0

Q(θ1)x+ b1
...

Q(θM )x+ bM

 ,

where y0 describes the deformation of all points that are outside of the Σk’s and
thus should deform non-rigidly, while y1, . . . , yM describe rigid deformations of
points that are inside Σ1, . . . ,ΣM , respectively. Substituting this in the objec-
tive function in (2), the optimization problem becomes unconstrained, and can
be written as

J (y0,(θ1, b1), . . . , (θM , bM )) =

D(R, T (y0, (θ1, b1), . . . , (θM , bM )))

+ αS(y0, (θ1, b1), . . . , (θM , bM ))→ min .
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Here, the optimization is now no longer performed with respect to the deforma-
tion, but with respect to a new parameter set [y0, (θ1, b1), . . . , (θM , bM )] where
each rigid region Σk is controlled by six parameters in θk, bk.

Since each Σk is a subset of Ω, the desired rigid areas are defined in the
reference image space.

A.3 Discretization and implementation

The optimization problem described in A.1 and A.2 is solved using a discretize-
then-optimize strategy [1]. The derived continuous model is first discretized on
a grid and the obtained function is then optimized using well-established tech-
niques from numerical optimization. To solve the discretized optimization prob-
lem, an iterative L-BFGS algorithm [6] is used for minimization. The L-BFGS
algorithm is then embedded in a multi-level optimization scheme, where the
optimization problem is consecutively solved on coarser to finer grids.

Here, a special strategy is used to prolongate the result obtained on a coarser
level to a starting guess on a corresponding fine level. First, the full deformation
field is prolongated as it would be using a standard deformable approach. After
prolongation a new match of grid points to rigid areas is determined, generating
a new set of unconstrained grid points while keeping the same number of rigid
parameters θk, bk, k = 1, . . . ,M , since the number of rigid regions does not
change. The result from the coarser level is then used as a starting guess for
those rigid parameters.
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[2] König, L., Rühaak, J.: A fast and accurate parallel algorithm for non-linear
image registration using normalized gradient fields. In: Biomedical Imaging
(ISBI), IEEE 11th International Symposium On, pp. 580–583 (2014)

[3] König, L., Derksen, A., Hallmann, M., Papenberg, N.: Parallel and memory
efficient multimodal image registration for radiotherapy using normalized
gradient fields. In: Biomedical Imaging (ISBI), IEEE 12th International
Symposium On, pp. 734–738 (2015)

[4] Fischer, B., Modersitzki, J.: Curvature based image registration. J Math
Imaging Vis 18, 81–85 (2003)

[5] Haber, E., Heldmann, S., Modersitzki, J.: A framework for image-based
constrained registration with an application to local rigidity. Linear Algebra
Appl 431, 459–470 (2009)

[6] Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn., pp. 176–180.
Springer, New York (1999)

3


	
	Registration Framework
	Local Rigidity
	Discretization and implementation


