A. Additional information on TCP calculation

GTV was considered to be the histopathology proven and defined cancer volume in the prostate. TCP was calculated according to the Poisson distribution as [17-21]:

$$
T C P=P_{B}=P_{G T V}(\{D\}, V)=\prod_{i=1}^{M} e^{-\rho_{\text {cell }} \Delta V_{i} P\left(D_{i}\right)}
$$

With $P\left(D_{i}\right)$ the survival probability for the dose $D_{i}[18,19]$:

$$
P\left(D_{i}\right)=e^{-\left(\frac{E Q D 2_{i}}{D 50}\right)(e \gamma-\ln \ln 2)} \quad \text { or equivalently } \quad P\left(D_{i}\right)=e^{-a E Q D 2_{i}\left(1+\frac{2 G y}{\alpha / \beta}\right)}
$$

M was the total number of voxels within GTV or of bins of the differential dose volume histogram for total dose in the GTV. $\rho_{\text {cell }}$ represented the cancer cell density in GTV and ΔV_{i} was the voxel volume or the total volume corresponding to the $\mathrm{i}^{\text {th }}$ dose bin. D50 was the equieffective dose for 2 Gy per fraction resulting to 50% tumor control probability and y was the maximum normalized dose-response gradient [19,26]. EQD2 ${ }_{i}$ was the equieffective dose for 2Gy per fraction for the total dose D_{i} for the $i^{\text {th }}$-voxel or $i^{\text {ith }}$-dose bin $[9,21]$:

$$
E Q D 2_{i}=D_{i}\left(1+\frac{D_{i} / N}{\alpha / \beta}\right) /\left(1+\frac{2 G y}{\alpha / \beta}\right)
$$

With N the total number of fractions for delivering the total dose D_{i}. α / β values described the curvature of the cell survival curve described by the linear-quadratic model, where α described the slope of the initial linear part of the curve.

B. Additional information on NTCP calculation

NTCP from non-uniform dose distributions were calculated using the relative seriality model [19,26-28]:

$$
P_{\mathrm{I}}=1-\prod_{j=1}^{N_{\text {organs }}}\left(1-P_{\mathrm{I}}^{j}\right)=1-\prod_{j=1}^{N_{\text {organs }}}\left(1-\left[1-\prod_{i=1}^{M_{j}}\left(1-P^{j}\left(D_{i}\right)^{s_{j}}\right)^{\Delta v_{i}}\right]^{1 / s_{j}}\right)
$$

With $P\left(D_{i}\right)$ the complication probability rate for the dose D_{i} and was given by the same formula as for TCP, where here D50 is the equieffective dose for 2Gy per fraction resulting to 50% complication probability. Δv_{i} was the volume fraction being irradiated to dose D_{i} and s was the parameter which expresses the degree of seriality (the value varies from s close to zero for nearly parallel organs and upwards for increasing seriality).

The maximum normalized dose-response gradient γ in the survival probability function was be calculated from the parameter k of the corresponding logit probability distribution according to the following:
$k=4 \gamma_{50} \quad$ and $\quad \gamma_{50}=\frac{\ln 2}{2}(e \gamma-\ln \ln 2), \quad$ thus $\quad \gamma=\frac{\frac{k}{2 \ln 2}+\ln \ln 2}{e}$
with γ_{50} the slope of the dose-response curve at the 50% response level.

