

Figure S1. Schematic drawing of coronal sections of the mFC

The mFC (yellow), which we analyzed in this study, contains the prelimbic and medial orbital cortices. mFC, medial frontal cortex.

Figure S2. Decrease in the number of parvalbumin+ cells in the basolateral amygdala (**A**) Representative coronal images of parvalbumin+ (magenta)/PNN+ (green) cells in the basolateral amygdala of mice treated with vehicle (upper row) or FLX (lower row). Mice received FLX for 3 weeks at 15 mg/kg/day. (**B**) Quantification of the number of parvalbumin+, PNN+, parvalbumin+/PNN+ cells, and the proportion of parvalbumin+/PNN+ cells in the total number of parvalbumin+ cells (n = 4 mice each; 11-week-old). BLA, basolateral amygdala; FLX, fluoxetine; PNN, perineuronal net; PV, parvalbumin.

Figure S3. Immunofluorescent staining of interneuron markers and PNN in the mFC, hippocampal CA3, basolateral amygdala, and RTN

(**A-D**) Representative coronal images of double staining for interneuronal markers (magenta) and PNN (green) are shown. Mice received FLX for 3 weeks at 15 mg/kg/day (n = 4 mice each; 11-week-old). Note that calretinin and somatostatin are hardly detected in PNN+ cells in the mFC (**A**), hippocampal CA3 region (**B**), basolateral amygdala (**C**), and RTN (**D**). BLA, basolateral amygdala; CA, cornu ammonis; CB, calbindin; CR, calretinin; FLX, fluoxetine; PNN, perineuronal net; PV, parvalbumin; RTN, reticular thalamic nucleus; SOM, somatostatin.

Figure S4. FLX treatment did not alter the number of apoptotic cells in the mFC and hippocampus

(A) Representative coronal images of TUNEL-stained mFC and hippocampal tissues in vehicle or FLX-treated mice. Mice received FLX for 3 weeks at 15 mg/kg/day.
(B) Representative images of TUNEL-stained mFC and hippocampal tissues in control or ischemia-treated mice. TUNEL+ cells are indicated by arrowhead (green).
(C) Quantification of the number of TUNEL+ cells in (A) and (B) (n = 4 mice each; 11-week-old). CA, cornu ammonis; DG, dentate gyrus; FLX, fluoxetine; mFC, medial frontal cortex; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling.

Figure S5

Figure S5. No production of new parvalbumin+ cells with FLX treatments in the mFC

(**A**) Representative coronal images of BrdU- (magenta), parvalbumin- (cyan), and PNN-stained (green) structures in the mFC. Mice received FLX for 3 weeks at 15 mg/kg/day.

(B) Quantification of the number of indicated marker-positive cells (n = 4 mice each;

11-week-old). BrdU, 5-bromodeoxyuridine; FLX, fluoxetine; PNN, perineuronal net;

PV, parvalbumin.

BrdU+ cells per mm² 400 200 0

30 p = 0.023 PV+/BrdU+ cells per mm² 20 10-0

PV+/PNN+/BrdU+ cells per mm² 25 p = 0.017 20 15 Т 10 5 0

70-

p = 0.43

Figure S6

Figure S6. No production of new parvalbumin+ cells with FLX treatments in the hippocampal CA3 region

(A) Representative coronal images of BrdU- (magenta), parvalbumin- (cyan), and PNN-stained (green) structures in the hippocampal CA3 region. Mice received FLX for 3 weeks at 15 mg/kg/day. (B) Quantification of the number of indicated marker-positive cells (n = 4 mice each; 11-week-old). BrdU, 5-bromodeoxyuridine; CA, cornu ammonis; FLX, fluoxetine; PNN, perineuronal net; PV, parvalbumin.

Figure S7. Increased expression of PSA-NCAM in the mFC, DG, and basolateral amygdala (**A**) Representative coronal images of PSA-NCAM+ structures (green) in the mFC, DG, and basolateral amygdala of mice treated with vehicle (upper row) or FLX (lower row). Mice received FLX for 3 weeks at 15 mg/kg/day. Arrowheads indicate PSA-NCAM+ cells in the DG. Images of the same sections stained with Hoechst are shown in the insets. (**B**) Quantification of the fluorescence intensities of PSA-NCAM signals in the mFC and basolateral amygdala and the number of PSA-NCAM+ cells in the DG of vehicle-treated and FLX-treated mice (n = 4 mice each; 11-week-old). BLA, basolateral amygdala; DG, dentate gyrus; FLX, fluoxetine; mFC, medial frontal cortex; PSA-NCAM, polysialic acid-neural cell adhesion molecule.

Figure S8. Decreased expression of calbindin in the DG of FLX-treated mice (**A**) Representative coronal images for the expression of calbindin in the DG of vehicle-(upper) or FLX-treated mice (lower). Mice received FLX for 3 weeks at 15 mg/kg/day. (**B**) Quantification of fluorescence intensity of calbindin in the granule cell layer of the DG in vehicle- or FLX-treated mice (n = 4 mice each; 11-week-old). DG, dentate gyrus; FLX, fluoxetine; Gr, granule cell layer.

Region	Marker	Treatment	Marker+ (cells/mm ²) ^{*1}	PNN+ (cells/mm ²)	Double+ (cells/mm ²) ^{*2}	Double+/total each marker+ $(\%)^{*3}$
mFC	CR	Vehicle	63 ± 2.8	57 ± 2.8	0.38 ± 0.19	59 ± 0.31
		FLX	61 ± 3.0	58 ± 3.3	0.35 ± 0.19	52 ± 0.29
	SOM	Vehicle	47 ± 3.2	58 ± 3.0	0.54 ± 0.26	1.0 ± 0.52
		FLX	43 ± 2.3	54 ± 3.1	0.55 ± 0.29	1.2 ± 0.57
CA3	CR	Vehicle	35 ± 1.8	37 ± 3.7	6.6 ± 0.66	19 ± 2.0
		FLX	32 ± 1.9	38 ± 2.7	5.9 ± 0.72	19 ± 3.3
	SOM	Vehicle	26 ± 2.2	34 ± 1.9	3.1 ± 1.1	11 ± 3.7
		FLX	26 ± 1.1	31 ± 1.6	2.0 ± 0.57	7.3 ± 2.2
Amygdala	CR	Vehicle	72 ± 4.7	38 ± 2.9	0.33 ± 0.33	0.46 ± 0.46
		FLX	65 ± 3.3	38 ± 2.2	0.33 ± 0.33	0.56 ± 0.56
	SOM	Vehicle	26 ± 1.9	31 ± 2.0	0	0
		FLX	26 ± 1.4	28 ± 1.5	0	0
RTN	CR	Vehicle	0.93 ± 0.49	478 ± 17	0	0
		FLX	1.0 ± 0.47	531 ± 26	0	0
	SOM	Vehicle	0.33 ± 0.33	517 ± 17	0	0
		FLX	0.55 ± 0.37	465 ± 28	0	0
	СВ	Vehicle	35 ± 5.6	488 ± 23	34 ± 5.5	99 ± 0.97
		FLX	47 ± 7.3	514 ± 21	46 ± 6.9	99 ± 0.71

Table S1. Density of PNN+ cells containing calretinin or somatostatin in the mFC, CA3, amygdala, and RTN

CA, cornu ammonis; CB, calbindin; CR, calretinin; FLX, fluoxetine; mFC, medial frontal cortex; PNN, perineuronal net; RTN, reticular thalamic nucleus; SOM, somatostatin.

*1: The numbers of marker-positive (+) cells (CR, SOM, or CB) are presented.

*2: The numbers of marker and perineuronal net (PNN) double+ cells are presented.

*3: The percentages of marker and PNN double+ cells out of all marker+ cells are presented.