Supplementary Materials

Figure S1 Multi-omics comparative analysis of normal, primary and metastatic pancreatic cancer cells. (A-I) Correlation analysis of Hi-C, ATAC-seq, RNA-seq and ChIP-seq sequencing libraries of 3 cell lines. HPNE: normal pancreatic epithelial cells; PANC-1: pancreatic cancer cells derived from primary tumor; Capan-1: pancreatic cancer cells derived from liver metastasis.

Figure S2 Hi-C resolution depth of 3 cell lines. (A) HPNE (B) PANC-1 (C) Capan-1.

Figure S3 Association between compartment reorganization, histone modifications, chromosome accessibility, and gene expression. (A) Pie chart showing the genomic compartment changes between HPNE and PANC-1 genomes. (B) Pie chart showing the genomic compartment changes between HPNE and Capan-1 genomes. (C) Pie chart showing the genomic compartment changes between PANC-1 and Capan-1 genomes. (D-F) Profiles of active and inactive histone modifications in A and B compartments of 3 cell lines. (G-I) Chromosome accessibility profile in A and B compartments of 3 cell lines. (J-L) Relationship of compartmentalization to gene expression $\left(\log _{2}\right.$ (fold-change)) in 3 cell lines (Wilcoxon rank sum test, ${ }^{*} \mathrm{p}<0.05$,
$\left.* * * \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001\right)$. Whiskers of box plots are from Q1-1.5*IQR to $\mathrm{Q} 3+1.5^{*} \mathrm{IQR}$.

Figure S4 Alterations of contact domains and contact domain boundaries during pancreatic cancer metastasis. (A) Venn diagram showing contact domain boundaries of 3 cell lines and the overlap among them. (B) The ratio of CTCF-positive/negative contact domain boundaries in 3 cell lines. (C-E) Average expression levels of genes located in each histone mark-enriched contact domains and contact domains without
histone modifications (other) across 3 cell lines (Wilcoxon rank sum test, ${ }^{* *} \mathrm{p}<0.01$, $* * * * p<0.0001$). (F-H) Size of histone mark-enriched contact domains and other contact domains in 3 cell lines (Wilcoxon rank sum test, ${ }^{* * * * p<0.0001 \text {). Whiskers of }}$ box plots are from Q1-1.5*IQR to Q3+1.5*IQR. (I) Upper: Fraction of histone markenriched TAD subgroups in common TADs between primary and metastasis. Lower: Fraction of histone mark-enriched TAD subgroups in specific TADs between primary and metastasis. (J) Upper: Fraction of histone mark-enriched TAD subgroups in common TADs between normal and primary. Lower: Fraction of histone markenriched TAD subgroups in specific TADs between normal and primary.

Figure S5 Loop reprogramming during pancreatic cancer metastasis. (A) Venn diagram showing TAD loops of 3 cell lines and the overlap among them. (B) The ratio of CTCF-mediated loops in 3 cell lines. (C) Top 20 most frequent loop categories for HPNE, PANC-1 and Capan-1. For each loop, the regulatory element overlapped with anchor 1 is shown on the bottom half of the rectangle and the
regulatory element overlapped with anchor 2 is shown on the top half of the rectangle. (D) Pie chart showing that genes looped to primary-specific enhancers enrich more upregulated genes. (E) $\log _{2}$ (fold change) between Capan- 1 and PANC-1 cells of genes that looped to primary-specific, common, and metastasis-specific enhancers (Wilcoxon rank sum test, ns $\mathrm{p}>0.05,{ }^{* * *} \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$).

Figure S6 LIPC promotes migration and EMT process of pancreatic cancer cells. (A)
Western blot of LIPC in PANC-1 with LIPC overexpression and Capan-1 with LIPC
knockdown. (B-C) Wound-healing assays in Capan-1 with LIPC knockdown and

PANC-1 with LIPC overexpression. Wounds were photographed, and the migration rate $(\mathrm{n}=3)$ was measured by ImageJ software (Whisker: mean \pm SEM, two-way ANOVA, *adj.p<0.05, **adj.p<0.01). (D) Western blot of EMT markers in PANC-1 with LIPC overexpression and Capan-1 with LIPC knockdown. (E) Transwell migration and invasion assay of PANC-1 with LIPC stably overexpression and Capan-1 with LIPC stably suppression. Representative images are shown. Maginification, $\times 200$. Cell number of migration/invasion are shown in the bottom panel (mean + SD) (Unpaired t test, migration: $\mathrm{p}=0.0018$, invasion: $\mathrm{p}=$ 0.0121(PANC-1); migration: $\mathrm{p}=0.0003$, invasion: $\mathrm{p}=0.0002$). (F) Photographs of dissected tumors from orthotopic xenograft mice injected with Lv Ctrl and Lv LIPC OE (overexpression) PANC-1 cells. (G) Analysis of primary tumor weights(Left, Wilcoxon rank sum test, $\mathrm{p}=0.0206$) and liver weights (Right, Wilcoxon rank sum test, 0.0244) were calculated at the end of the experiment. (H) Representative HE staining pictures of the primary tumor and liver. (Magnification, $\times 200$).

Table S1 Clinicopathological features of patients with primary pancreatic cancer.

Clinicopathological features	
Number of cases	$83.56(27.91)$
LIPC IHC Score (mean (SD))	
Gender (\%)	
Female	$33(37.9)$
Male	$54(62.1)$
Age (mean (SD))	$60.83(9.36)$
Smoking history (\%)	$34(39.1)$
Drinking history (\%)	$19(21.8)$
Diabetes history (\%)	$13(14.9)$
CA199 (mean (SD))	$937.05(2219.53)$

Size (mean (SD))	3.43 (1.53)
Site (\%)	
Head/Neck	48 (55.8)
Body/Tail	39 (44.2)
Differentiation (\%)	
Poor	29 (37.1)
Moderate	22 (28.2)
Well	27 (34.6)
Capsule invasion (\%)	80 (96.4)
Vascular invasion (\%)	4 (6.5)
Bile duct invasion (\%)	28 (45.9)
Neural invasion (\%)	17 (27.4)
T classification (\%)	
T1	16 (20.3)
T2	47 (59.5)
T3	16 (20.3)
N classification (\%)	
N0	44 (50.6)
N1	43 (49.4)

Table S2 Clinicopathlogical features of pancreatic cancer patients with liver metastasis

Clinicopathological features	
Number of cases	27
LIPC IHC Score (mean (SD))	$126.30(48.01)$
Gender (\%)	
Female	$14(51.9)$
Male	$13(48.1)$
Age (mean (SD))	$63.26(9.15)$
Smoking history	$7(25.9)$
Drinking history	$4(14.8)$

Diabetes histroy	$4(14.8)$
CA199 (mean (SD))	1141.84 (1644.92)
Site	
Head/Neck	$19(70.4)$
Body/Tail	$8(29.6)$
Vascular invasion ${ }^{1}$ (\%)	$10(37.0)$
Size of primary cancer 1 (mean (SD))	$3.14(1.28)$

1. Vascular invasion and size of the primary cancer were measured by preoperative

CT scanning

Table S3 Primers for ChIP-qPCR

Location	Forward primer	Reverse primer
LIPC promoter	CTGCAGCTAGCAGTGAAGTCT	CCCCGGTTGCAAATTAGATGC
LIPC enhancer 1	CCTTCGGTGTGAGTCTTTGC	TGCAACTTCACCAGCCTCTAT
LIPC enhancer 2	AGCAGCTGCCAAATTGGATGA	CTGTTCCCACTCCCTACCTC
LIPC enhancer 3	CACAGGAACGTGTTGCAAGG	TAGGGAGACAGTAGGAGCCG
LIPC enhancer 4	TGACATGGGCTGGGTGTTAT	TTCCCTGAGTTCTCCCACAC
LIPC enhancer 5	ACGAGTACACGCTATGGCAG	AGGGCTTGAGTGCCATATTT
LIPC enhancer 6	GACTTCGCTTCTCTGGGAGG	CTCCCCGCTCCCTATTGTC
LIPC enhancer 7	CGCGGGTTTGGACTTGAAGG	GTCACCTTGTACTGCCCTCTC

Table S4 Primers for 3C-qPCR

Location	Primer
LIPC promoter (constant)	AGTGCAGAGGCTGAGAAACC
LIPC enhancer 1	CCCAAGAGGTGAAAATTTGG
LIPC enhancer 2	CAGGGATGAAAAGGCAGAAA
LIPC enhancer 3	AAACAGAGGAAGCCCTACCC

LIPC enhancer 4	ACACTGTTCTGGGTGTGTGG
LIPC enhancer 5	GCAAAGTGATATTCAGCCACAA
LIPC enhancer 6	AGGCACACCTTGAGGTTTTT
LIPC enhancer 7	GGACTCAGAGCGAGTTACCTG
Negative control (Forward)	CGGGAGAAGCTGAGTCATGG
Negative control (Reverse)	TTTACAGCCTGGCCTTTGGG

Table $\mathbf{S 5}$ sgRNA for CRISPRi

Location	sgRNA
sgEnh1	ACAGCAAAGACTCACACCGA
sgEnh2	GCCGGCTTTAATGCCCGCGT
sgEnh3	TCGGTGGCCAGAAATTCTCG
sgEnh4	GGGGAATTAGCATACGGCCC
sgEnh5	AGCCATACGAGTACACGCTA
sgEnh6	AGAGTAGAAGTTCGGTCCCT
sgEnh7	TTGGGTACCGCCGGAGACGC
sgPro	GTCAGGAGCTAGTAACGCTA

