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Methods 

 

Patients and treatment  

Prognosis in AML is associated with age [1,2] and the treatment used, therefore 

we analyzed younger CN-AML patients aged <60 years, for whom cytotoxic induction 

chemotherapy is standard treatment. Our training set included 306 adult patients aged 

<60 years (range, 17-59) diagnosed with de novo AML between 1986 and 2016 and 

enrolled on frontline Cancer and Leukemia Group B (CALGB) clinical trials and 

companion studies. CALGB is now part of Alliance for Clinical Trials in Oncology 

(Alliance). All patients were cytogenetically normal, which was determined in each case 

by analysis of ≥20 metaphase cells in bone marrow (BM) specimens subjected to short-

term (24- and/or 48-hour) culture performed by CALGB-approved institutional 

laboratories. The results were confirmed by central karyotype review [3]. Generally, 

patients received intensive cytarabine and daunorubicin or idarubicin-based induction 

treatment and all patients included achieved a complete remission (CR). No patient 

received allogeneic hematopoietic stem-cell transplantation (HSCT) in first CR on study 

protocols, and patients who were transplanted off-study were excluded because of 

missing or incomplete follow-up data. All patients had RNA-sequencing and gene 

mutation data from diagnostic samples available. Gene mutation profiling was performed 

based on a custom-designed 80 gene panel, that includes the recurrently mutated, repeatedly 

validated AML-associated genes based on published disease-defining hallmark studies [4,5]. To 

validate the performance of our fitted model, we employed an independent test set from 

the German AML Cooperative Group (AMLCG), available under Gene Expression 

Omnibus accession number GSE146173 [6], where we restricted attention to the 40 de 
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novo CN-AML patients aged <60 years who were treated in the AMLCG 2008 trial [7], 

achieved a CR (excluding patients who achieved CR with incomplete blood recovery), 

and had gene expression measured in their pre-treatment samples using the RNA-seq. 

Mutation data for the AMLCG cohort were available for 19 genes - to enforce 

consistency between the training and test sets, we restricted attention to these 19 gene 

mutations. All patients provided written informed consent for participation in the 

treatment studies. Institutional Review Board approval of all CALGB/Alliance and 

AMLCG protocols was obtained before any research was performed. 

 
RNA-Seq preprocessing methods 

 

Training set RNA-seq sample preparation 

The training set of de novo CN-AML patients aged <60 years who achieved complete 

remission was derived from a larger dataset that initially consisted of 893 samples from 

patients with abnormal AML or CN-AML, 29 CBF patients from the Nationwide cohort, 

and 49 patients from the Nationwide Disparities AML Project. Tumor derived RNA was 

subjected to 0.8x SPRI bead cleanup and size selection prior to DNase treatment and 

ribodepletion prior to using the NEBNext Ultra II Directional kit preparation. The library 

was constructed for whole transcriptome sequencing (RNA-seq). Paired-end reads were 

either 50-bp or 150-bp and were generated on the Illumina NovaSeq (Illumina, Inc.). Prior 

to alignment, 150-bp reads were trimmed to 50-bp to mitigate batch effects due to read 

length. Then reads were aligned to the human genome reference sequence (GRCh38). 
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Training set RNA-seq data pre-processing 
 
Samples with < 10 million total counts and/or < 60% of total counts assigned to protein 

coding genes were removed from the dataset. Two batches were defined: as 893 samples 

from the Alliance for Clinical Trials in Oncology (Alliance; consisting of abnormal AML and 

CN-AML patients) and 78 samples from two Nationwide Projects (CBF and Disparities 

AML Projects). Genes having a mean counts-per-million ≥ 0.5 in at least one batch were 

retained. The R package poibm (installed from 

https://bitbucket.org/anthakki/poibm/src/master/ on March 2, 2023) was used for batch 

correction. The poibm.fit function was called with the count data in the Nationwide batch 

(source) and Alliance batch (target space). The phenotype parameters were set to rhoX 

= 0.25 and rhoY=1; parameter values controlling the E-M estimation were set to max.iter 

= 100 and max.resets = 20. The poibm.apply function was used to apply the fits 

(corrections) to the Nationwide sample counts, followed by rounding to the nearest 

integer. 

 

Clinical endpoints and statistical analysis 

We estimated RFS as the time from CR until relapse, death, or last-follow-up, 

censoring for patients alive without relapse. Following the 2022 ELN guidelines [8], we 

considered both relapse and death as events when estimating RFS. Therefore, herein 

“cure” is synonymous with attaining long-term RFS. Prior to applying an MCM, we 

needed to verify we had sufficient follow-up [9,10] and that there was a significant non-

zero cure fraction in our dataset. To this end, we examined the Kaplan-Meier survival 

curve to ascertain the plateau and estimated the time at which 95% of events should 
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occur [11]. We then performed a hypothesis test to detect whether there was a 

significant non-zero cure fraction for RFS using both the simulated non-parametric and 

the parametric approaches [11,12].  

We were interested in investigating the effects of the covariates on our time-to-

event outcome. We hypothesized that there was one subgroup consisting of patients 

immune to the event (those relapse-free, in other words, those who were cured) and 

another subgroup consisting of patients susceptible (termed susceptibles) to the event 

(relapse or death). We let p represent the proportion of susceptibles, so (1 - p) 

represents the proportion cured. The finite mixture model can be used to arrive at the 

overall RFS model, 𝑆(𝑡), which is decomposed into the sum of the individual subgroup 

survival functions weighted by the proportion of the relevant subgroup size, or  

𝑆(𝑡) = (1 − 𝜋)𝑆!(𝑡) + 𝜋𝑆"(𝑡).                                    (Eq. 1) 

where 𝑆!(𝑡) is the survival function for those cured while 𝑆"(𝑡) is the survival function for 

those susceptible [12], We also note that for those cured, the survival function, 𝑆!(𝑡), at 

any timepoint is 1, which can be substituted into Eq. 1 to yield a simplified survival 

function. As previously mentioned, we were interested in estimating the effect of 

covariates on the outcome. Notice again that our outcome model (Eq. 1) consists of two 

components: the incidence component which models susceptible versus cured and the 

latency component which models time-to-event for those susceptible. It is possible that 

different covariates affect these different parts of our model, so we let x and w denote 

the covariates included in the incidence and latency components, respectively. Thus, 

our MCM  

𝑆(𝑡|𝐱,𝐰) = .1 − 𝜋(𝐱)/ + 𝜋(𝐱)𝑆"(𝑡,𝐰|𝑌 = 1)                      (Eq. 2) 
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allows us to identify the effect of covariates on the likelihood of being susceptible to the 

event versus immune to the event (or cured) and the time-to-event (or latency) among 

those susceptible. The latency or time-to-event function for susceptibles can be 

modeled in different ways, using, for example, a parametric, a non-parametric, or semi-

parametric survival model. We choose to use the semi-parametric Cox model as it 

relaxes the parametric assumptions in the baseline latency distribution and therefore 

increases model flexibility over parametric MCMs [13].  

Our goal was to identify a multivariable model using genomic features, namely 

genes having expression significantly associated with either the cure or latency. 

Because few variable selection methods exist for high-dimensional MCMs, we 

developed a penalized semi-parametric MCM for high-dimensional datasets to identify 

prognostically relevant genes that can distinguish patients cured from patients 

susceptible to the event with lower or higher risk of relapse. Given our observed data 

and unknown parameters, we used the Expectation-Maximization (E-M) algorithm [14] 

where we divided the problem into logistic regression for cure status component and 

survival regression for susceptible patients to estimate the parameters for the latency 

component of the model. Specifically, we expressed the complete-data log-likelihood 

assuming the cure status is observed and included a LASSO penalty for the incidence 

covariates and a LASSO penalty for the penalized latency covariates. Initial values for 

the intercept for the incidence portion of the model and the baseline hazard for the 

latency portion of the model were obtained by fitting logistic regression and survival 

models, respectively, and all penalized coefficients were initialized to 0. In the 

Estimation step (E-step), we calculated the expected penalized complete-data log-
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likelihood with respect to the conditional distribution of cure given the current parameter 

estimates and observed data, where we replaced the unknown cure status indicator 

with its estimated proportion. In the Maximization step (M-step), we estimated the 

parameters by expressing the objective function as the sum of two separate functions 

corresponding to the incidence and latency components of the model. The incidence 

component was estimated as a penalized logistic regression with a fractional response. 

The latency component involves the parameters and the baseline latency function, so 

the optimization problem turned into a penalized Cox regression with an offset term. 

The baseline latency was estimated by first obtaining Breslow’s estimator for the 

cumulative baseline hazard though inclusion of an extra term in the denominator and 

applying the Weibull tail completion method when the last observation is censored. The 

E-M algorithm alternated between an E-step and a M-step until convergence.  

 

Mixture cure model applied to the training and test sets 

RNA-seq expression values were candidate covariates in our semi-parametric 

penalized MCM to identify a parsimonious list of transcripts associated with cure or 

latency. Pre-processing steps applied to the RNA-seq data for the training set are 

described in the Training Set RNA-seq Data Pre-processing section. The AMLCG RNA-

seq data were processed as previously described [6]. We combined the training and 

test sets then voom normalized [15] and applied ComBat [16] to batch-correct RNA-Seq 

data, then filtered the data by applying thresholds to gene-level means (>2) and 

standard deviations (>0.75) of our training set, leaving 4,770 genes for model fitting. 

Ten-fold cross validation was repeated 100 times to choose the optimal model using the 
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training set, using the cross-validated area under the receiver operating characteristic 

curve (AUC) to select the penalty for the incidence portion of the model and the cross-

validated C-statistic to select the penalty for the latency portion of the model. After fitting 

our penalized semi-parametric MCM to the training set, we applied the fitted MCM to the 

test set. 

 

Results 

Demographic, clinical, and select gene mutation data for patients in our training 

and test sets are presented in Supplementary Table 4. The training set was more 

balanced with respect to sex than the test set (p=0.028), and the test set patients had 

significantly higher percentage of BM blasts (p=0.021), whereas the training set patients 

had significantly higher percentage of blasts in the blood (p<0.001). Among 19 gene 

mutations examined, there were differences in the frequencies of NRAS (p=0.025) and 

WT1 (p<0.001) mutations between the training and test sets, whereas there was no 

significant difference with respect to the patient assignment into the 2022 ELN genetic-

risk groups (p=0.749).  

 

Model development 

There was a significant non-zero cure fraction for RFS in the training set 

(p<0.0001) with the estimated percentage of patients cured at 28.5% (Figure 1A). This 

demonstrates heterogeneity of the outcomes of patients with CN-AML, and that our data 

are likely composed of two subgroups: one subgroup of patients who are susceptible to 

the event (relapse or death) and the second of patients who are “cured.” 
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Prior to applying our penalized semi-parametric MCM, we verified that we had 

sufficient follow-up data and that a significant non-zero cure fraction was present in our 

training set. Figure 1A depicts RFS for our training set, estimated using the Kaplan-

Meier method. The time at which 95% of events should have occurred was estimated to 

be 5.3 years and the 95th percentile of observed event times was 4.92 years, whereas 

the median follow-up among patients alive at their last follow-up was 9.78 years (range, 

0.61 to 21.23 years). This, together with the long plateau in the RFS curve, which does 

not drop down to zero (Figure 1A), provides empirical evidence of sufficient follow-up. 

 

Examination of model predictions in conjunction with known prognostic factors 

In the training set, patients predicted to be cured and those predicted to be 

susceptible with lower risk of relapse or death had lower white blood cell counts (WBC; 

p=0.02) and percentages of BM blasts (p=0.018) than patients predicted to be 

susceptible with higher risk of relapse or death (Supplementary Table 5). There were 

also significant differences among these three groups with respect to DNMT3A 

(p<0.001), CEPBAbzip (p=0.035), and RUNX1 (p=0.036) mutations and the presence of 

tyrosine kinase domain mutations in the FLT3 gene (FLT3-TKD; p=0.005) and internal 

tandem duplications of the FLT3 gene (FLT3-ITD; p<0.001), as well in categorization to 

the 2022 ELN genetic-risk groups (p<0.001) (Supplementary Table 5). However, when 

we examined the mutational status of genes having mutations that occurred in at least 

30 patients, which included NPM1, CEPBAbzip, DNMT3A, FLT3-ITD, FLT3-TKD, IDH1, 

IDH2, NRAS, and PTPN11, we found significant differences between patients predicted 

to be cured versus those predicted to be susceptible and between those predicted to be 
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susceptible with lower and higher risk of relapse or death (Supplementary Figures 3-

11). This indicated that our model improved upon inclusion of these mutation data.  

 

Model validation 

Patients in our independent test set were diagnosed with AML more recently and 

therefore their median follow-up of 4.05 years (range, 0.11 to 6.27 years) among 

patients alive at their last follow-up was shorter than follow-up of patients in our training 

set (Figure 1D). Thirteen patients underwent an allogeneic HSCT in first CR and were 

thus censored at the date of HSCT, which also differs from our training set. While the 

Kaplan-Meier curve does not necessarily show that a cure fraction is present (Figure 

1D), because this patient cohort consists of younger CN-AML patients with RNA-seq 

data available, we considered it a useful proxy test set. In the test set, there were 

significant differences among patients predicted to be cured versus those predicted to 

be susceptible with lower and higher risk of relapse or death for CEBPAbZIP (p=0.020), 

GATA2 (p=0.02), and WT1 (p=0.017) mutations (Supplementary Table 6).  

 

Biological relevance of genes in our MCM signature 

Topp Gene (accessed on August 18, 2023) was used to provide biological 

insights with respect to genes included in our MCM signature. Several of them were 

identified in previously published studies. Fourteen genes, namely, PRTN3, SCRN1, 

ARHGEF17, PROM1, NRXN2, SERPING1, AK4, ITM2C, ALDH2, FHL1, MDFIC, CD34, 

ELANE and EMP1, were differentially expressed between AML patients with NPM1 

mutations and those with wild-type NPM1 (FDR<0.0001) [17], whereas 11 genes, 
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CDKN2C, PRR5L, PITPNC1, FAAH, PROM1, ITM2C, USP13, MDFIC, RHD, GYPA 

and CD34, were downregulated in AML patients with cytoplasmic NPM1 localization 

compared with those without cytoplasmic NPM1 localization (FDR=0.0001) [18]. We 

examined the performance of our model in NPM1-mutated patients and there was a 

significant difference in RFS between patients predicted to be cured versus those 

predicted to be susceptible (p<0.0001) and between those predicted to be susceptible 

having higher versus lower risk of relapse or death (p<0.0001) (Supplemental Figure 3). 

Four genes, IL18, PRTN3, ALDH2 and HDC, were previously identified to be in the 

Cebpa signaling network that was identified from differentially expressed genes in 

leukemic cells from murine spleens comparing Cbfb+/MYH11d179-221 and 

Cbfb+/MYH11 chimeras (FDR=0.009) [19]. When examining the performance of our 

model in CEBPAbZIP-mutated patients, there was a significant difference in RFS 

between patients predicted to be cured versus those predicted to be susceptible 

(p<0.0001) and between those predicted to be susceptible having higher versus lower 

risk of relapse or death (p<0.0001) (Supplemental Figure 4).  

 

Discussion 

Most adult patients diagnosed with acute myeloid leukemia (AML) harbor 

recurrent chromosomal abnormalities at diagnosis [20,21]. Nevertheless, patients with 

cytogenetically normal AML (CN-AML) comprise the largest cytogenetic subgroup, 

ranging from 40% to 49% of all adult patients with AML [22]. Historically, they were 

considered to have intermediate prognosis [20,21,23]. However, several large studies 

demonstrated that CN-AML patients are very heterogeneous clinically [23] and 
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molecularly [1,22,24–32], which has led the European LeukemiaNet (ELN) experts to 

develop genetic-risk classifications [8,33,34], in which the presence of select gene 

mutations serves as criteria allowing stratification of CN-AML patients into Favorable, 

Intermediate, and Adverse genetic-risk groups [8]. Although the prognostic value of 

these classifications has been validated [35–38], there is still heterogeneity of clinical 

outcomes among CN-AML patients within the same ELN genetic-risk groups. Thus, 

there is an unmet clinical need to refine currently used genetic-risk stratification to 

optimize treatment guidance. 

Previous studies found that adult CN-AML patients exhibit more variability in their 

gene-expression profiles than other commonly observed cytogenetic groups [39–51]. 

However, some of these studies have included heterogeneous cytogenetic groups in 

the classifer development [40], included both younger and older CN-AML patients 

despite the fact that treatment regimens often differ by age group [30–32,40,45,50,51], 

focused on older CN-AML patients aged ≥60 years [28,29,42–44], or derived gene-

expression signatures associated with recurrent gene mutations [1,25–32,43,45,46], or 

with the expression of selected genes with prognostic significance [42,44,47,48].  

In prior studies, development of prognostic models derived using high-throughput 

gene-expression data selected genes either by assigning patients to two groups, those 

who remained in CR ≥3 years and those who relapsed, or predicted attainment of CR 

[49]. Others fit univariate Cox proportional hazards models followed by (1) k-means 

clustering to identify naturally occurring groups related to time-to-event outcome [40], 

(2) principal component analysis [50], or (3) a multivariable Cox model [51,52], or 

validated previously identified gene clustering using compound covariate prediction by 
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modeling alive versus dead at last follow-up rather than fitting a time-to-event model 

[41]. However, in several publications, the Kaplan-Meier estimate of survival 

demonstrates a long plateau that does not drop down to zero despite long follow-up, 

suggesting the existences of a subgroup of CN-AML patients who enjoy long-term RFS 

that approaches their population expected survival. In fact, it has been suggested that 

AML patients attaining 3-year RFS can be considered “potentially cured” [2]. Moreover, 

in a study of 1,068 AML patients who achieved a CR, the failure rate declined over time, 

thus the proportional hazards assumption was not satisfied [2]. Our multivariable 

mixture cure model overcomes problems encountered when the proportional hazards 

assumption is violated due to the presence of a cured subset and permits modeling a 

censored time-to-event outcome rather than defining arbitrary groups such as those 

who remained in CR ≥3 years and those who relapsed. 

A recent study sought to identify molecular markers associated with long-term 

RFS in CN-AML patients by employing a case-control design whereby single-cell RNA 

sequencing profiles of 28 CN-AML patients remaining in first CR for at least five years 

were evaluated against 31 well-matched CN-AML patients who relapsed within two 

years of achieving their first CR [53]. Others developed a prognostic model for patients 

with CN-AML that was based on the mutational status of select genes (CEBPAbZIP, 

FLT3-ITD, NPM1) and clinical characteristics (age, WBC, Eastern Cooperative 

Oncology Group performance status) instead of using high-throughput gene-expression 

data [54]. They also fit a multivariable Cox PH model, which is known to yield inaccurate 

estimates when a cure fraction is present.  
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Therefore, instead of employing a case-control design which requires a priori 

arbitrary timepoints for patient classification, we employed a novel time-to-event model 

and established a predictive algorithm for identifying long-term survivors using RNA-seq 

data evaluated in samples collected at the time of diagnosis. Our penalized MCM 

identified genes associated with cure and latency in younger CN-AML patients, which 

performed well when applied to an independent test set.  
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