Supplementary materials

Tables

Table S1. Characteristics of the patient population.

	Total MF (29 cases)	JAK2 ^{v617F} (23 cases)	TN (6 cases)
Median age, years (range)	72 (43-84)	71 (43-82)	75 (60-84)
Males, no. (%)	16 (55%)	13 (52%)	3 (50%)
Median Hemoglobin, g/dl; median (range)	11.3 (7.1-17.2)	11.5 (7.1-17.2)	9.7 (7.5-14.3)
Median Leukocytes, x 10 ⁹ /l; median (range)	10.5 (2.5-40)	10.5 (4.7-40)	10.7 (2.5-27)
Median Platelets, x 10 ⁹ /l; median (range)	168 (38-631)	174 (48-631)	121 (38-613)
Median Lymphocyte x 10 ⁹ /l; median (range)	1.2 (0.2-11.7)	1.1 (0.2-5.6)	4.1 (0.4 -11.7)*
Median Monocyte x 10 ⁹ /I; median (range)	0.5 (0.05-5)	0.4 (0.05-2)	0.7 (0.2-5.3)
Blood blasts ≥1%	8 (27%)	6 (26%)	2 (33%)
TSS >20	3 (10%)	3 (13%)	0
Spleen ≥10 cm	13 (44%)	11 (47%)	2 (33%)
BM fibrosis, no. of patients (%)			
Grade 2	22 (75.8 %)	16 (69.6%)	6 (100%)
Grade 3	7 (24%)	7 (30%)	0
IPSS, no. of patients (%)			
Low	2 (6%)	2 (8%)	0
Intermediate-1	11 (37%)	8 (34%)	3 (50%)
Intermediate-2	7 (24%)	6 (26%)	1 (17%)
High	9 (31%)	7 (30%)	2 (33%)
WHO Diagnosis			
PMF	17 (58%)	12 (52%)	5 (83%)
PPV-MF	10 (34%)	10 (43%)	0
PET-MF	2 (6%)	1 (4%)	1 (17%)
Unfavourable karyotype ¹	11	10	1
	¹ by DIPPS-plus		

Table S2. Pathway enrichment analysis for differentially expressed transcripts between EVs from TN and JAK2V617F-mutated patients.

-			
Source	Pathway	P value	Genes
GO-BP	Antigen processing and presentation	2.22E-07	HLA-DQB1, HLA-DRB1, ULBP3, HLA-DRB4, HLA-B, HLA-DQA2, CD74, HLA-DQA1
KEGG	Antigen processing and presentation	6.55E-05	HLA-DQB1, HLA-DRB1, HLA-DRB4, HLA-B, HLA-DQA2, CD74, HLA-DQA1
GO-BP	Interferon-gamma-mediated signaling pathway	2.31E-04	HLA-DQB1, HLA-DRB1, HLA-DRB4, HLA-B, HLA-DQA2, HLA-DQA1
KEGG	Cell adhesion molecules (CAMs)	3.12E-04	HLA-DQB1, ITGAL, HLA-DRB1, HLA-DRB4, CNTNAP2, HLA-B, HLA-DQA2, HLA-DQA1
GO-BP	Immune response	4.63E-04	HLA-DQB1, TNFRSF1B, TNFSF10, TNFSF4, HLA-DRB1, HRH2, HLA-DRB4, HLA-B, HLA-DQA2, CD74, HLA-DQA1, CTSG
GO-BP	Regulation of immune response	0.0129	ITGAL, ULBP3, TREML2, HLA-B, TYROBP, HCST
GO-BP	Calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules	0.0200	PCDHB9, PCDHB14, PCDHB11
GO-BP	Homophilic cell adhesion via plasma membrane adhesion molecules	0.0353	PCDHB9, ROBO1, PCDHB14, PCDHB12, PCDHB11

GO-BP, gene ontology biological process

15 Table S3. List of the selected miRNAs with their relative fold-changes (FC).

	MF vs HD		TN vs JAK2 ^{V617F}	
	microRNA (miR)	FC	microRNA (miR)	FC
	miR-127-3p	9.25	miR-122-5p	2.55
	miR-15b-5p	6.69	miR-365a-3p	2.52
	miR-221-3p	5.62	miR-744-5p	2.47
	miR-19a-3p	4.07	miR-27a-3p	2.32
	miR-21-5p	2.53	miR-548c-3p	2.05
	miR-146a-5p	2.27	miR-361-5p	-2.23
	miR-222-3p	2.18	let-7b-5p	-2.45
	miR-24-3p	2.07	miR-34a-5p	-4.50
	miR-155-5p	2.01		
	miR-202-3p	-2.27		
16	miR-212-3p	-2.60		
17		MiRs	validated by RT-qPCR are re	ported in red.
18				
19				
20				
21				
22				
23				
24				
25 26				
20				
28				
29				
30				
31				
32				
33				
34				
35				
36				
51 20				
30 30				
40				
41				
42				
43				

2

44 Figures

45 Figure S1. EV characterization by TME and NTA

a

b

Results	HD	JAK2 ^{V617F}	TN
Mean	116 ± 13.4	119 ± 14.7	125.2 ± 14.1
Mode	78.7 ± 13.4	85.4 ± 14.4	89.74 ± 19
SD	52.8 ± 8.5	53.6 ± 9.1	52.34 ± 4.5
D10	67.7 ± 8.6	67.8 ± 8.5	74.61 ± 14
D50	101.2 ± 10.8	104.8 ± 13.6	111 ± 13.9
D90	183.1 ± 24.6	185 ± 25.1	189.6 ± 16.3

Figure S1. Characterization of EVs isolated from plasma by ultracentrifugation. (a) Whole-mount transmission electron micrograph of EVs displaying the characteristic EV morphology in each sample between HD, *JAK2V617F*-mutated and TN patients. b) Summary of data obtained by Nanosight equipment for each EV isolated by ultracentrifugation.

- ~~

65 Figure S2. Flow cytometry characterization of EVs.

66 а

С

80

Figure S2. Surface marker profiles of plasma-derived EV from MF patients and HD. Background corrected APC median signal intensities after incubation of plasma-derived EVs from 3 JAK2^{V617F}-mutated patients (a) or 3 TN patients (b) and 3 HD (c). EVs from plasma with 39 capture antibody bead populations, followed by staining with a cocktail of anti-CD9-, anti-CD63- and anti-CD81-APC antibodies. REA, mlgG1 indicate isotype control-beads. d) CD9, CD63, CD81 frequency in EVs by flow cytometry.

CD81

CD63

CD9

- 87 88
- 89

90 Figure S3. Representative western blot and quantification graph for TOMM20

93

a) Representative western blot of EVs preparation from HD, JAK2^{V617F}-mutated, and TN patient-derived plasma. β -tubulin was used as a loading control. b) Graphic representation of quantification for TOMM20 expression normalized to the relative β -tubulin from HD (n=3), JAK2^{V617F}-mutated (n=3), and TN (n=2) patients. The translocase of outer mitochondrial membrane 20 (TOMM20) protein level was determined using the ImageJ analysis software and normalized to β -tubulin, taken as an index of loading control. Histograms show the mean ± SEM.