

Figure S1. Establishment of TAb2 and TCh3 models. (A) Schematic diagram depicting the generation of KPPA tumor cell lines. (B) Western blotting data showing the absence of TP53 protein and the presence of PIK3CA hyperactive allele (KI) that encodes a protein slightly larger than WT PIK3CA protein (WT) in TAb2 and TCh3 parental and daughter cell lines. AKT as loading control. (C) Different tumor growth pattern of TAb2 versus TCh3 tumors. Tumor growth curves for TAb2 ($n=3$) and TCh3 ($n=4$) tumors when 1×10^{6} tumor cells were injected subcutaneously at the flank of WT B6 mice. P values are shown for Sidak's multiple comparisons by two-way ANOVA.

Figure S2. Gating strategy for different subsets of myeloid cells. After gating on CD45 ${ }^{+}$ population, we gated on non-T/non-B population (TCR $\beta^{-C D 19-) . ~ F r o m ~ t h e ~ n o n-T / n o n-B ~ p o p u l a t i o n, ~}$ we gated on CD11b ${ }^{+}$population. In the CD11b+ population, we identified M-MDSC (Ly6ChighLy6G-) and PMN-MDSC (Ly6C ${ }^{\text {low } L y 6 G^{+} \text {). For TAMs, we gated on Ly6C-Ly6G- population, then gated on }}$ $\mathrm{F} 4 / 80^{+} \mathrm{CD} 11 \mathrm{~b}^{+}$population. For M2-TAMs, we gated on $\mathrm{F} 4 / 80^{+} \mathrm{CD} 11 \mathrm{~b}^{+} \mathrm{CD} 206{ }^{+} \mathrm{CD} 86-$ population.

Figure S3. Heatmap of gene expression of selected epigenetic modulators in bulk RNA-seq data. Expression values for each gene are scaled across TAb2 ($n=2$) and TCh3 ($n=2$) tumor cells. Genes were filtered for those differentially expressed with a threshold of log2(fold change)=0.58 (1.5-fold difference) (A) or log2(fold change)=1 (2-fold difference) (B) and BH adjusted pvalue $=0.05$.

Overlapping mutations in TAb2

$112 \quad 2128$

GATK pipeline

BCFtools pipeline

Overlapping mutations in TCh3

159
 41
 101

Figure S4. Somatic mutations identified in TAb2 and TCh3 tumors using both variant calling pipelines. Venn diagrams of overlapping mutations in TAb2 (top) and TCh3 (bottom) identified by GATK (right, light green) and BCFtools (left, light orange) pipelines in WES data (see details in Method).

Figure S5. Growth curves of different myeloid populations upon co-culture of BM cells with TAb2 or TCh3 tumor cells. The frequencies of each cell type were determined by flow cytometry at different time points of co-culture (Day 2, 3 and 4). The frequency of (A) TAMs (CD11b+Ly6C-Ly6G-F4/80+), (B) dendritic cells (CD11b+CD11c ${ }^{+}$), (C) myeloid cells (CD11b+), (D) MMDSC (CD11b+Ly6G-Ly6Chi), and (E) PMN-MDSC (CD11b+Ly6G+Ly6Clow). BM alone (black), TAb2BM (red) and TCh3-BM (blue) co-culture are shown. Results are representative of more than three independent experiments done in triplicates.

B

PI3K-Akt signaling pathway

Ribosome

Figure S6C, D

Figure S6E, F

Figure S6. Gene Set Enrichment Analysis (GSEA) using KEGG pathway depicts transcriptional profiles of negatively or positively enriched in TAb2 and TCh3 tumor cells. (A) The bar graph shows top 20 enriched KEGG pathways labeled on the y-axis with gene count (number of genes in the specific pathway from the output data of DESeq) on the x-axis and colorcoded according to the adjusted p-value. (B) The Gene-Concept network plot shows the genes that are involved in the top three most significant pathways. The Gene-Concept Network depicts the linkages of genes and biological concepts as a network. The pathway circle size corresponds to the number of genes, while the genes themselves are color coded to reflect the fold change. (C-H) GSEA plots showing enrichment of protein processing in endoplasmic reticulum (C, D), ribosome (E, \mathbf{F}), and PI3K-Akt signaling pathway (\mathbf{G}, \mathbf{H}). To further assess the three most significant pathways, genes involved in each pathway is shown (C, E, and G). An enrichment score is calculated which represents the degrees to which a set of genes is over-represented at the top or bottom of the ranked list (D, F, and H). The green curve corresponds to the ES (enrichment score) curve, which is the running sum of the weighted ES obtained from GSEA software.

VEGF-A

VEGF-B

$$
\begin{gathered}
\text { Group }+ \text { High Expression } \\
+ \text { Low expression }
\end{gathered}
$$

CSF1

Group + High Expression

CSF1-VEGF-A

CSF1-VEGF-B

Group + High Expression

Figure S7. Survival curves for HNSCC patients expressing different levels of CSF1 and/or VEGF. 10-year survival Kaplan-Meier plots of HNSCC patients who had both PIK3CAAmp and TP53Mutated ($n=300$). Patients were grouped into high-expression group or low-expression group based on gene expression as described in Methods.

A

B

C

Figure S8

Figure S8. Flow cytometry analysis confirmed that anti-PD-L1 treatment did not affect the cell types present in the TME of TAb2 tumors and tumor-infiltrating CD8 T cell function compared to control TAb2 tumors. Flow cytometry was performed for spleens ($n=9$), or the tumor-infiltrating immune cells from TAb2 VC $(n=9)$ and TAb2 anti-PD-L1 ($n=10$) tumors for all panels. TAb2 tumor cells $\left(0.5 \times 10^{6}\right)$ were injected s.c., and tumors were harvested on Day 21 post-injection. (A) Quantification of
 calculated using two-way ANOVA with Tukey's multiple comparison test. (B) Quantification of the percentages of MDSCs. M-MDSC (CD11b+Ly6G ${ }^{-L y 6 C}{ }^{\text {high }}$) and PMN-MDSC (CD11b+Ly6G+Ly6C ${ }^{\text {low }}$). (C) Quantification of the percentages of TAMs (CD11b ${ }^{+}$Ly $6 G^{-}$Ly6C ${ }^{-}$F4/80 ${ }^{+}$) in spleen, TAb2 control and TAb2-anti-PD-L1 treated tumors. P values are shown for Tukey's multiple comparisons by two-way ANOVA (MDSCs) and one-way ANOVA (TAMs). (D) Frequencies of the CD8 ${ }^{+}$T cells producing single or double cytokines (IFN γ^{+}, TNF α^{+}, and IFN γ^{+}TNF α^{+}) in response to ex vivo stimulation. P values are shown for Tukey's multiple comparisons by two-way ANOVA.

$\begin{aligned} & \text { Figure } \\ & \text { 2A } \end{aligned}$	CD11b ${ }^{+}$	P-values	B Figure							
				8B	CD11b ${ }^{+}$	P-va				
	SPLEEN (TCh3) vs. TAb2	<0.0001			aPDL1 vs. TCh3	>0.9				
	SPLEEN (TCh3) vs. TCh3	<0.0001			aPDL1 vs. SP					
	TAb2 vs. TCh3	0.0053			TCh3 vs. SP	<0.0				
	CD4 ${ }^{+}$	P-values			CD4 ${ }^{+}$	P-va				
	SPLEEN (TCh3) vs. TAb2	0.0034			aPDL1 vs. TCh3	>0.9				
	SPLEEN (TCh3) vs. TCh3	>0.9999			aPDL1 vs. SP					
	TAb2 vs. TCh3	0.0030			TCh3 vs. SP					
	CD8 ${ }^{+}$	P-values			CD8 ${ }^{+}$	P-va				
	SPLEEN (TCh3) vs. TAb2	0.0024			aPDL1 vs. TCh3					
	SPLEEN (TCh3) vs. TCh3	>0.9999			aPDL1 vs. SP					
	TAb2 vs. TCh3	0.0091			TCh3 vs. SP	<0.0				
Figure	M-MDSC	P-values	$\frac{\mathbf{I F N} \gamma^{+}}{\text {aPDL1 vs. TCh3 }}$			P-values				
						0.0154<0.0001				
	Spleen vs. TAb2	0.7025	aPDL1 vs. SP							
	Spleen vs. TCh3	0.1298	TCh3 vs. SP			<0.0001				
	TAb2 vs. TCh3	0.4346	TNF ${ }^{+}$			P-values				
	PNM-MDSC	P-values	aPDL1 vs. TCh3			0.7611				
	Spleen vs. TAb2	0.038	aPDL1 vs. SP			<0.0001				
	Spleen vs. TCh3	0.5895	TCh3 vs. SP TNF $\boldsymbol{\alpha}^{+}$IFN γ^{+}			<0.0001				
	TAb2 vs. TCh3	0.2843				P-values				
	F4/80	P-values	$\frac{\mathbf{T N F a ^ { + }} \mathbf{I F N} \gamma^{+}}{\text {aPDL1 vs. TCh3 }}$			$\begin{aligned} & 0.9737 \\ & 0.0273 \end{aligned}$				
	Spleen vs. TAb2	<0.0001	aPDL1 vs. SP TCh3 vs. SP							
	Spleen vs. TCh3	0.4327								
	TAb2 vs. TCh3	<0.0001				C				
$\underset{2 \mathbf{E}}{\text { Figure }}$	CD206-CD86 ${ }^{+}$	P-values	Figure	F4/80 ${ }^{+}$in CD11b		P-values				
			S5A							
	Spleen vs. TAb2	0.95810.1414		BM (media only) vs. TAb2 BM (media only)			<0.0001			
	Spleen vs. TCh3									
	TAb2 vs. TCh3	0.2111		BM (media only) vs. TCh3 BM (media only)TAb2 BM (media only) vs. TCh3 BM			0.1320			
	CD206 ${ }^{+}$CD86-	P-values					<0.0001			
	Spleen vs. TAb2	<0.0001		(media only)						
	Spleen vs. TCh3	$\begin{aligned} & <0.0001 \\ & <0.0001 \end{aligned}$	Figure							
	TAb2 vs. TCh3		S5B	CD11b ${ }^{+}$CD11c ${ }^{+}$in CD45			P-values			
	CD206 ${ }^{+} \mathrm{CDP6}^{+}$	P-values		BM (media only) vs. TAb2 BM (media only)			0.6371			
	Spleen vs. TAb2	0.0099								
	Spleen vs. TCh3	0.8605		BM (media only) vs. TCh3 BM (media only)			0.0011			
	TAb2 vs. TCh3	0.0403		TAb2 BM (media only) vs. TCh3 BM (media only)			0.0084			
Figure2G		P-values	Figure							
	$\underline{\mathrm{IFN} \gamma^{+}}$		S5C	CD11b ${ }^{+}$in CD45			P-values			
	SPLEEN (TCh3) vs. TAb2	<0.0001		BM (media only) vs. TAb2 BM (media only)			<0.0001			
	SPLEEN (TCh3) vs. TCh3	$\begin{array}{r} <0.0001 \\ 0.0115 \end{array}$								
	TAb2 vs. TCh3			BM (media only) vs. TCh3 BM (media only)			<0.0001			
	$\underline{\mathbf{T N F} \boldsymbol{a}^{+}}$	P-values		TAb2 BM (media only) vs. TCh3 BM (media only)			<0.0001			
	SPLEEN (TCh3) vs. TAb2	$\begin{aligned} & <0.0001 \\ & <0.0001 \end{aligned}$								
	SPLEEN (TCh3) vs. TCh3		Figure				P-values			
	TAb2 vs. TCh3	0.8422	S5D	M-MDSC in CD11b						
	$\underline{\text { TNF } \alpha^{+} \text {IFN } \gamma^{+}}$	P-values		BM (media only) vs. TAb2 BM (media only)			<0.0001			
	SPLEEN (TCh3) vs. TAb2	0.2604								
	SPLEEN (TCh3) vs. TCh3	0.0066		BM (media only) vs. TCh3 BM (media only)			<0.0001			
	TAb2 vs. TCh3	<0.0001		TAb2 BM (media only) vs. TCh3 BM (media only)			0.9967			
			Figure							
			S5E	PMN	-MDSC in CD11		P-values			
				BM (media only) vs. TAb2 BM (media only)			0.5874			
				BM (media only) vs. TCh3 BM (media only) TAb2 BM (media only) vs. TCh3 BM			<0.0001			
				TAb2 BM (media only) vs. TCh3 BM (media only)			<0.0001			

$\begin{array}{c}\text { Figure } \\ \text { S8A }\end{array}$		
$\mathbf{C D 1 1 b}^{+}$	P-values	
	Spleen vs. TAb2	0.0004
	Spleen vs. aPDL1	0.0014
	TAb2 vs. aPDL1	>0.9999
	CD4 $^{+}$	P-values
	Spleen vs. TAb2	<0.0001
	Spleen vs. aPDL1	0.0045
	TAb2 vs. aPDL1	0.7918
	CD8 $^{+}$	P-values
	Spleen vs. TAb2	0.0002
	Spleen vs. aPDL1	0.0021
	TAb2 vs. aPDL1	>0.9999

Figure

Figure		P-values
S8B	M-MDSC	0.7835
	TAb2 vs. aPDL1	0.8203
	TAb2 vs. Spleen	0.9974
	aPDL1 vs. Spleen	P-values
	PMN-MDSC	0.0701
	TAb2 vs. aPDL1	0.001
	TAb2 vs. Spleen	<0.0001

Figure

S8C	F4/80	P-values
	Spleen vs. TAb2	0.0059
	Spleen vs. aPDL1	<0.0001
	TAb2 vs. aPDL1	0.9439

Figure

S8D	$\mathbf{I F N} \boldsymbol{\gamma}^{+}$	P-values
	Spleen vs. TAb2	<0.0001
	Spleen vs. aPDL1	<0.0001
	TAb2 vs. aPDL1	0.9396
	$\mathbf{T N F} \boldsymbol{\alpha}^{+}$	P-values
Spleen vs. TAb2	<0.0001	
Spleen vs. aPDL1	<0.0001	
TAb2 vs. aPDL1	0.9858	
TNF $\boldsymbol{\alpha}^{+} \mathbf{I F N} \boldsymbol{\gamma}^{+}$	P-values	
Spleen vs. TAb2	0.0003	
Spleen vs. aPDL1	0.0003	
TAb2 vs. aPDL1	0.9932	

Figure S9. Detailed P-values for figures. (A) Statistical significance was calculated using KruskalWallis test for Figure 2A and Two-way ANOVA for Figures 2C, E and G. (B) Statistical significance was calculated for Figure 8B using Two-way ANOVA. (C) Statistical significance for Figure S5 Day 4 time point was calculated using Two-way ANOVA. (D) Statistical significance was calculated using KruskalWallis test for Figure S8A and Two-way ANOVA for Figures S8B-D.

