

UMUC3

E
EJ

UMUC3

F

FigS1. CircSTX6 promotes the metastasis in BCa. A The knockdown and efficiency of circSTX6 in UMUC3 cells was detected by qRT-PCR. B The overexpression efficiency of circSTX6 in UMUC3 cells was detected by qRT-PCR. C Representative and quantified results of the Transwell migration and invasion assays in UMUC3 cells transfected with scramble, sh-circ\#1, sh-circ\#2, vector or circSTX6. Scale bar, $100 \mu \mathrm{~m}$. D Cell migratory capabilities were assessed by wound healing assays after knocking down or overexpressing circSTX6 in UMUC3 cells. Scale bar, $400 \mu \mathrm{~m}$. E CCK-8 assays showed the viability of BCa cells stably transfected with vector or circSTX6. F Edu assays depicted the proliferation rate of BCa cells stably transfected with scramble, sh-circ\#1 or sh-circ\#2. Scale bar, $200 \mu \mathrm{~m}$. The data are presented as the means \pm S.D. of at least three independent experiments. $* P<0.05 . P$ values are calculated by Student's t test in \mathbf{B} and \mathbf{C} and one-way ANOVA in \mathbf{A} and \mathbf{C}.

C

E

Fig.S2

D

FigS2. miR-515-3p inhibits BCa migration and invasion in vitro. A-B The influence on cell migration and invasion abilities of EJ (A) and UMUC3 (B) cells transfected with miR-NC, miR-515-3p, anti-miR-NC or anti miR-515-3p. Scale bar, $100 \mu \mathrm{~m}$. C-D Cell migratory capabilities were assessed in BCa cells transfected with miR-NC, miR-515-3p, anti-miR-NC or anti miR-515-3p by wound healing assays. Scale bar, $400 \mu \mathrm{~m}$. E Wound healing assays showed the migration abilities in EJ cells transfected with scramble or sh-circ\#1, and those co-transfected with anti-miR-NC or anti miR-515-3p. Scale bar, $400 \mu \mathrm{~m}$. The data are presented as the means \pm S.D. of at least three independent experiments. $* \mathrm{P}<0.05 . \mathrm{P}$ values are calculated by Student's \mathfrak{t} test in A-D and one-way ANOVA in \mathbf{E}.

Fig.S3

Fig S3. CircSTX6 enhances the SUZ12 expression in BCa. A The mRNA and protein level of SUZ12 in UMUC3 cells stably transfected scramble, sh-circ\#1, sh-circ\#2, vector or circSTX6. B The expression level of SUZ12 in the TCGA BLCA dataset. C Western blot were performed to evaluate the expression of SUZ12 in EJ and UMUC3 cells which were transfected with scramble or sh-circ\#1, and those cotransfected with mock or SUZ12. The data are presented as the means \pm S.D. of at least three independent experiments. $* \mathrm{P}<0.05$. P values are calculated by Student's t test in \mathbf{A} (right) and one-way ANOVA in \mathbf{A} (left).

FigS4. Knockdown of SUZ12 inhibits BCa migration and invasion in vitro. A Transwell assays showed the migration and invasion of UMUC3 cells transfected with mock, SUZ12, scramble or sh-SUZ12\#1. Scale bar, $100 \mu \mathrm{~m}$. B-C Cell migratory capabilities were assessed in EJ and UMUC3 cells transfected with with mock, SUZ12, scramble or sh-SUZ12\#1 by wound healing assays. Scale bar, $400 \mu \mathrm{~m}$. The data are presented as the means \pm S.D. of at least three independent experiments. $* P<0.05$. P values are calculated by Student's t test in A-C.

Fig S5. PABPC1 could facilitate the expression level of SUZ12 in UMUC3 cells. A The efficiency of PABPC1 knockdown or overexpression in UMUC3 cells was verified by qRT-PCR (left) and western blot (right). B qRT-PCR assay showed the expression of circSTX6 in UMUC3 cells transfected with the indicated plasmids. C qRT-PCR and western blot assays showed the expression of SUZ12 in UMUC3 cells transfected with the indicated plasmids. The data are presented as the means \pm S.D. of at least three independent experiments. $* P<0.05 . P$ values are calculated by Student's t test in \mathbf{A} and \mathbf{C} and one-way ANOVA in \mathbf{A} and \mathbf{C}.

Fig.S

Fig S6. Silencing of circSTX6/SUZ12 complex promotes the chemosensitivity of BCa cells to CDDP. A Determination of IC50 values for CDDP treatment 24 h in EJ cells which were stably transfected with mock or SUZ12 vector. B Flow cytometry apoptosis assays were used to assess apoptosis rate of UMUC3 cells stably transfected with sh-SUZ12\#1 after CDDP treatment. C Determination of IC50 values for CDDP treatment 24 h in EJ cells which were stably transfected with vector or circSTX6 plasmid. D Flow cytometry apoptosis assays were used to assess apoptosis rate of UMUC3 cells stably transfected with shcircSTX6 after CDDP treatment. E Tumor sphere formation assays were used to assess the self-renewal capacity of BCa treated with CDDP. The scale bar indicates $100 \mu \mathrm{~m}$. F-G Immunofluorescence staining showed the expression of $\gamma \mathrm{H} 2 \mathrm{AX}$ in BCa cells treated with CDDP. The scale bar indicates $20 \mu \mathrm{~m}$. H-I Immunofluorescence staining showed the expression of $\gamma \mathrm{H} 2 \mathrm{AX}$ in BCa cells treated with CDDP. The scale bar indicates $20 \mu \mathrm{~m}$. J qRT-PCR assay showed the relative expression levels of circSTX6 in the EJ and EJ-CDDP cell lines. K Determination of IC50 values for CDDP treatment 24 h in EJ-CDDP cells which were stably transfected with scramble, sh-circ\#1 or sh-circ\#2 vector. L-M Flow cytometry assay revealed the CDDP effect in EJ-CDDP cells transfected with scramble, sh-circ\#1 or sh-circ\#2. N Flow cytometry assay revealed the CDDP effect in EJ-CDDP cells transfected with vector or circSTX6, and those co-transfected with scramble or sh-SUZ12\#1. The data are presented as the means \pm S.D. of at least three independent experiments. $* P<0.05 . P$ values are calculated by Student's t test in $\mathbf{B}, \mathbf{D}, \mathbf{G}, \mathbf{I}$ and \mathbf{J} and one-way ANOVA in \mathbf{M} and \mathbf{N}.

