Additional file

A rare large duplication of *MLH1* identified in Lynch syndrome

Abhishek Kumar^{1,2,3,#}, Nagarajan Paramasivam^{4,#}, Obul Reddy Bandapalli^{1,5,6}, Matthias Schlesner⁷, Tianhui Chen⁸, Rolf Sijmons⁹, Dagmara Dymerska¹⁰, Katarzyna Golebiewska¹⁰, Magdalena Kuswik¹⁰, Jan Lubinski¹⁰, Kari Hemminki^{1,11,12,§} and Asta Försti^{1,5,6,§,*}

¹ Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany

² Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India

³ Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India

⁴ Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Germany

⁵ Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany

⁶ Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany

⁷ Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁸ Department of Cancer Prevention, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China

⁹ Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands

¹⁰ Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland

¹¹ Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic

¹² Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Additional file: Table 1 Number of large deletions and duplications in the mismatch repair genes reported in the InSiGHT database and their clinical classification according to Mismatch Repair Gene Variant Classification Criteria by the InSiGHT Variant Interpretation Committee.

Gene	Total number of	Number of exon-level	Clinical classification	Total number of	Number of exon-level	Clinical classification
	deletions	deletions		duplications	duplications	
MLH1	290	77	All pathogenic	80	9	2 pathogenic, 7 VUS
MSH2	276	84	All pathogenic	85	7	3 pathogenic, 4 VUS
MSH6	152	13	9 pathogenic, 4 VUS	77	1	VUS
PMS2	35	19	All pathogenic	6	0	

VUS, variant of uncertain significance

Additional file: Fig. 1 (Family B) Pedigree of the colorectal cancer family with MLH1 frameshift variant; (Family C) Pedigree of the colorectal cancer family with MSH2 splice site variant.

Additional file: Fig. 2 Microsatellite instability (MSI) analysis of tumor samples of two family members from Family A and one tumor sample from Family C. For each family, individuals with tumor samples analyzed are indicated by an arrow and the MSI plots are shown for the corresponding germline and tumor samples.

