Additional file-1

Exploring the heterogeneity of effects of corticosteroids on ARDS: a systematic review and meta-analysis

Sheng-Yuan Ruan, MD; Hsien-Ho Lin, MD, ScD; Chun-Ta Huang, MD; Ping-Hung Kuo, MD; Huey-Dong Wu, MD; and Chong-Jen Yu, MD, PhD

e-Table 1. Details of included randomized controlled trials (RCTs) and cohort studies

e-Table 2. Quality assessment for randomized controlled trials using Cochrane Risk of Bias Tool

e-Table 3. Quality assessment for cohort studies using Newcastle-Ottawa Quality Assessment Scale

e-Table 4. Comparability between steroid and control groups in cohort studies

e-Table 5. Randomized trials reporting both short-term and hospital mortality

e-Table 6. Definitions of corticosteroids-associated infections in RCTs and cohort studies

Author	Timing of			Case No.			Mortality	Overall
(Published Year)	steroid therapy ^a	Study sites	Age⁵	Control	Steroid	Causes of ARDS ^c	endpoint	mortality
RCTs								
Weigelt et al.	Dreventive	Single-center	46	14	25	Transfusion 36%, sepsis 32%, contusion 21%,	Hospital	44%
(1985)	Preventive	USA				aspiration 16%, aspiration 16%		
Bone et al. (1987)	Dreventive	Multicenter	55	38	50	Sepsis 100%	14 days	39%
	Preventive	USA						
Luce et al. (1988)	Dreventive	Single-center	52	14	13	Septic shock 100%	Hospital	78%
	Preventive	USA						
Bernard et al.	c D dava	Multicenter	55	49	50	Sepsis 27%, aspiration pneumonia 18%, pancreatitis	45 days	62%
(1987)	< 3 days	USA				4%, shock 2%, fat emboli 1%, others 42%		
Meduri et al.	2 nd week	Multicenter	48	8	16	Pneumonia 50%, extrapulmonary sepsis 21%,	Hospital	63%
(1998)	2 week	USA				aspiration 13%, postoperative 8%, drug 8%		
Annane et al.	c 2 dava	Multicenter	60	92	85	Septic shock 100%	Hospital	68%
(2006)	< 3 days	France						
Steinberg et al.	2 nd week	Multicenter	49	91	89	Pneumonia 42%, sepsis 22%, aspiration 19%, trauma	60 days	29%
(2006)	2 WEEK	USA				14%, transfusions 1%, other 12%		
Meduri et al.		Multicenter	51	28	63	Pneumonia 42%, postoperative 37%, aspiration 20%,	Hospital	30%
(2007)	< 3 days	USA				extrapulmonary sepsis 16%, Other 22%		

e-Table 1. Details of Included Randomized Controlled Trials (RCTs) and Cohort Studies

(Continued)

Author (Dublished	Timing of	Timing of steroidCase No.Study sitesAgebControlSteroid			No liter	0		
Author (Published Year)				Control Steroid		Causes of ARDS ^c	Mortality endpoint	Overall mortality
Cohort studies								
Fowler et al. (1985)	No report	Multicenter USA	53	34	53	Aspiration 18%, multiple risks 16%, pneumonia 11%, bacteremia 10%, transfusion 10%, other 23%	60 days	66%
Headley et al. (1997)	3 rd week	Multicenter USA	43	34	9	Pneumonia 44%, extrapulmonary infection 16%, sepsis 7%, aspiration 5%	ICU	49%
Keel et al. (1998)	3 rd week	Single-center Switzerland	50	18	13	SIRS 35%, pneumonia 29%, sepsis 19%, aspiration 16%	ICU	55%
Varpula et al. (2000)	2 nd week	Single-center Finland	43	15	16	Pneumonia 87%, aspiration 13%	30 days	19%
Song et al. (2003)	1 st week	Single-center China	59	17	60	Pneumonia 35%, cardiopulmonary resuscitation 16%, extrapulmonary sepsis 13%, postoperative 13%, pancreatitis 12%, trauma 6%	ICU	68%
Lee et al. (2005)	< 3 days	Single-center Korea	67	8	12	Postoperative 100%	Hospital	40%
Bajwa et al. (2009)	No report	Single-center USA	63	147	30	Pneumonia 75%, septic shock 59%, sepsis 30%, aspiration 9%, multiple transfusions 8%, trauma 4%	60 days	42%

e-Table 1 (Continued)

(Continued)

	e-Table 1 (Continued)								
Author (Published	Timing of			Cas	e No.		Mortality	Overall mortality	
Year)	steroid therapy ^a	Study sites	Age⁵	Control	Steroid	Causes of ARDS ^c	endpoint		
Brun-Buisson et al.	< 2 days	Multicenter	47	125	83	H1N1 Influenza 100%	Hospital	24%	
(2011)	< 5 uays	< 3 days France		125	65		Hospital	2470	
Schellongowski et	< 3 days	Single-center	39	3	14	H1N1 Influenza 100%	ICU	41%	
al. (2011)	< 5 uays	Austria	59	5	14			41%	
Linko et al. (2011)	< 3 days	Multicenter	50	12	46	H1N1 Influenza 100%	Hospital	12%	
	S udys	Finland	50	12	40		nospital	1270	

e-Table 1 (Continued)

SIRS =systemic inflammatory response syndrome

^aAverage duration of ARDS prior to steroids

^bMean or median age in years.

^cCauses of ARDS might be multiple.

	Random sequence	Allocation	Blinding of participants and	Blinding of outcome	Incomplete outcome	Selective reporting	Other bias
Study	generation (Selection	concealment	personnel (Performance	assessment	data (Attrition bias)	(Reporting bias)	
	bias)	(Selection bias)	bias)	(Detection bias)			
Weigelt (1985)	Unclear risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Unclear risk
Bone (1987)	Unclear risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear risk
Bernard (1987)	Unclear risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Luce (1988)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear risk
Meduri (1998)	Low risk	Low risk	Unclear risk	Low risk	Low risk	Low risk	Unclear risk
Annane (2006)	High Risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear risk
Steinberg (2006)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Meduri (2007)	Unclear risk	Low risk	Unclear risk	Low risk	Low risk	Low risk	Unclear risk

e-Table 2. Quality Assessment for Randomized Controlled Trials Using Cochrane Risk of Bias Tool

		Sele	ection				Outcome	
	Representativen	Selection of the	Ascertainment	Demonstration that		Assessment	Was follow-up	Adequacy of
Study	ess of the	non-exposed	of exposure	outcome of interest	Comparability	of outcome	long enough for	follow up of
	exposed cohort	cohort		was not present at			outcomes to	cohorts
				start of study			occur	
Fowler (1985)		*	*	*		*	*	*
Headley (1997)		*	*	*		*	*	*
Keel (1998)		*	*	*	*	*	*	*
Varpula (2000)		*	*	*	*	*	*	*
Song (2003)		*	*	*		*	*	*
Lee (2005)			*	*	*	*	*	*
Bajwa (2009)		*	*	*	*	*	*	*
Brun-Buisson (2011)	*	*	*	*	* *	*	*	*
Schellongowski (2011)		*	*	*		*	*	*
Linko (2011)		*	*	*	*	*	*	*

e-Table 3. Quality Assessment for Cohort Studies Using Newcastle-Ottawa Quality Assessment Scale

Study	Adjusted factors or comparability statement in individual cohort study
Fowler (1985)	Nil
Headley (1997)	Comparable APACHE II score and etiology of acute lung injury between steroid and control groups.
Keel (1998)	Some attending physicians used corticosteroids for ARDS but others did not.
Varpula (2000)	Comparable distribution of age, sex, admission APACHE II score, PaO ₂ /FiO ₂ ratio and etiology of acute lung injury
	between steroid and control group.
Song (2003)	Nil
Lee (2005)	Control group was identified from a period in which steroid therapy was not given for ARDS in the study hospital.
	The steroid and control groups were similar demographically and clinically (age, sex, operation method, onset of
	ARDS and PaO_2/FiO_2 ratio).
Bajwa (2009)	Using multivariate analysis to adjust for C-reactive protein level, age, APACHE III score and acute hepatic failure.
Brun-Buisson (2011)	Propensity score-adjusted Cox survival analysis.
Schellongowski (2011)	Nil
Linko (2011)	Comparable age, sex between steroid and control groups.

e-Table 4. Comparability between Steroid and Control Groups in Cohort Studies

APACHE = Acute Physiology and Chronic Health Evaluation

C to under	Montolity and sint	No. of death /	No. of patients	
Study	Mortality endpoint	Control	Steroids	Relative risk (95% C.I.)
Meduri (1998)	ICU mortality	5/8	0/16	0.05 (0.003 to 0.78)
	Hospital mortality	5/8	2 / 16	0.20 (0.05 to 0.81)
Annane (2006)	28-day mortality	62 / 92	49 / 85	0.85 (0.68 to 1.06)
	Hospital mortality	67 / 92	54 / 85	0.87 (0.71 to 1.07)
Meduri (2007)	ICU mortality	12 / 28	13 / 63	0.48 (0.15 to 0.92)
	Hospital mortality	12 / 28	15 / 63	0.56 (0.30 to 1.03)

e-Table 5. Randomized Trials Reporting Both Short-term and Hospital Mortality

Study	Definition of infections	Duration of evaluation	No. of patients with in / No. of patient		Infection risk
			Control	Steroids	
RCTs					
Bernard (1987)	New infections with a positive culture from blood or sterile sites.	7 days	5 / 49	8 /50	10% vs 16%
Meduri (1998)	Infection surveillance including pneumonia, catheter related infection, sinusitis, urinary tract infection, bacteremia and others.	During therapy	6/8	12 / 16	75% vs 75%
Steinberg (2006)	Serious infections (e.g., nosocomial pneumonia, disseminated fungal infection, or sepsis).	28 days	30 / 91	20 / 89	33% vs 22%
Annane (2006)	Superinfections (Catheter-related infection, nosocomial pneumonia, urinary tract infection, surgical wound infection, others).	28 days	12 / 92	12 / 85	13% vs 14%
Meduri (2007)	Infection surveillance including pneumonia, catheter	7 days	8 / 28	10 / 63	29% vs 16%
	related infection, sinusitis, urinary tract infection, bacteremia and others.	During study	17 / 28	27 / 63	61% vs 43%
Cohort studies					
Varpula (2000)	Nosocomial infections.	During therapy	5 / 15	9 /16	33% vs 56%
Brun-Buisson	ICU-acquired infection.	ICU stay	44 / 125	38 / 83	35% vs 46%
(2011)	ICU-acquired pneumonia.	ICU stay	33 / 125	34 / 83	26% vs 41%

e-Table 6. Definitions of Corticosteroids-associated Infections in RCTs and Cohort Studies