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1 Acoustic parameters

In the main paper we focused on five acoustic parameters as having primary interest: average sound–pressure
level (LAeq), background–noise level (L90), the rate of loud peaks per hour with a magnitude of at least 10 sone
(LoudPeaks10S), and the number and duration of the restorative periods (NumRestPeriod and AvgDurRestPeriod).
In addition to these parameters, we calculated an additional series of parameters thatwediscuss andpresent here.
Collectively, these parameters enabled amore complete assessment of the acoustic environment of the participat-
ing ICUs. Note that for the visualizations below, we used the untransformed data and removed one outlier value
for the average duration of restorative period.

Figures 1 – 5 provide an overview of the distribution of data (using box and whisker plots) from all calculated pa-
rameters. Figure 1 (left-handpanel) illustrates that hospitalswere fairly similar1 in termsof average sound–pressure
level (LAeq) and shows that, on average, sound–pressure level (SPL) dropped about 6 dBA from 55 dBA during the
day to 49 dBA during the night which may be a relevant reduction given the fact that an approximately 10 dB de-
crease equates to an approximately halving of loudness. Those averages are, however, higher than the WHO rec-
ommendations for average nighttime sound–pressure levels in hospitals (35 dBA) [1]; In fact, even the average
24-hour background–noise level of 38.1 dBA (L90; see Table 3 in the main article) is higher than the recommended

1Note that we deliberately did not test whether the differences between hospitals were statistically significant because, first and foremost,
the observational nature of the present study precluded reliably explaining these differences due to themany confounded or interacting differ-
ences between hospitals. Wewere alsoworried that wewouldmake toomany false discoveries (even after performingmultiplicity corrections)
due to the large number of comparisons we would need to make.
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Figure 1: Box and whiskers plot for average and background (A-weighted, fast) sound–pressure level (LAeqand L90,
respectively) for each hospital and three recording periods. Recording period All: 0:00 - 23:59; Day: 7:00-22:59;
Night: 23:00 - 7:00 with 7:00 being the moment when an RCSQ was completed.
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Figure 2: Box andwhiskers plot for the 90th percentile andmedian (A-weighted, fast) sound–pressure level (L10 and
L50, respectively) for each hospital and three recording periods. See Figure 1 for details on the recording periods.

threshold of 35 dBA. The right–hand panel shows that, when comparing time periods within hospitals, the dis-
tributions hardly changed, implying that L90 truly reflects background–noise levels due to, for instance, building
characteristics like type of air conditioning.

Figure 2 completes the data regarding the distribution of sound–pressure levels showing box and whiskers plots
for the 90th and 50th (median) decile (L10 and L50, respectively). Adding the right-hand panel of Figure 1 to the right
of these two panels illustrates how the distributions of sound–pressure levels (SPL) changed from having a wider
shape and, within hospitals, considerable differences between day and night for L10, to very narrow distributions
for L90 with no discernable differences between SPL comparing day and night. This highlights that background
noise L90 is, as expected, fairly stable during the day (within a hospital) but that “foreground” sound (L10) varies in
SPL to a greater extent and also that it, again expected, reduces during the night. The shapes and placement of the
distributions of L50 (Figure 2, right–hand panel), representing the middle/median values, nicely capture the mid
point between L10 and L90.

The next interesting comparison is regarding peak noises. Figure 3 shows in the left-hand panel the number of
loud peaks with a magnitude of at least 10 sone whereas the right-hand panel shows the number of loud peaks
irrespective of magnitude. Obviously, the total number of loud peaks per hour is higher when including all peaks
(right-hand panel) but more interesting is that during the night, compared to the total number of sound peaks,
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Figure 3: Box andwhiskers plot for the rate of loud peaks (per hour) with a 10 sonemagnitude (left-hand panel) and
all peaks (independent of magnitude; right-hand panel). See Figure 1 for details on the recording periods.
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Figure 4: Box and whiskers plots for the number of (left panel) and average duration of the restorative periods (in
minutes; right-hand panel) for the three recording periods (see Figure 1). Note that the range of number of restora-
tive periods is different between the three time periods due to having different durations. For average duration of
restorative periods, we zoomed in on data between 0 and 50; this removed two data points at around 55 and 70
minutes.

the number of peaks exceeding 10 sone decreased to a larger extent. Given that the sound-pressure level (L90) did
not change from day to night, and that the loudness of the alarms (presumably) also does not change, the larger
reduction in number of 10 sone peaks during the night is most likely due to a reduction of staff and/or visitors
activity in the ICU.

The remaining parameters, that we did not discuss yet, are the number and duration of the restorative periods (see
Figure 4). The relationship between these two parameters is complicated in that compared to fewer and shorter
restorative periods,more and longer is better for recovery, butmore restorative periods also implies that (logically)
their average duration needs to be shorter. It might be surprising that the distributions of number of restorative
periods during day and night seems similar. However, considering that the day period comprises a 16-hour period
and night only 8 hours, it is clear that during the night, more restorative periods occur and, at least visually (see
Footnote 1), they seem to have a slightly longer duration. Combining the previous observation regarding peak
sounds with the present one, we therefore suggest, in themain paper, that interventions to reduce staff-generated
noise seems to be a reasonable and achievable goal to try and improve sleep quality of patients in ICUs.

We also assessed themaximum sound–pressure level of peak sounds per minute (indexed using the LAFmax,1min pa-
rameter; see Figure 5), which is also related to short-time high-level sound events (peak sounds) but now based on

3



40

50

60

70

All Day Night

Recording period

LA
F

m
ax

hospital site 1
site 2

site 3
site 4

site 5
site 6

Figure 5: Box and whiskers plots for the average of the maximum sound–pressure level per minute (LAFmax,1min) for
the recording periods that are explained in the caption of Figure 1.

a physicsmodel whereas the peak sounds in Figure 3 are based on a psychophysiologicalmodel [2]. We noted that
the average level of LAFmax,1min is lower during the night than during the day, but that it exceeds the recommended
noise level of 40 dBA that is proposed by theWHO (Table 4.1) [1]. It is these peak sounds that typically end a restora-
tive period. Note again that Figure 3 shows a perception–basedperspective on peak soundswhereas Figure 5 takes
an acoustic (physics) view using sound–pressure levels. It is clear that the sound–pressure level of some of those
peak sounds cannot be reduced because they are caused by alarms that the staff need to hear. The observational
nature of the study precludes concluding that only alarms causes these excessive SPL’s or that also staff activity
increases SPL’s in the ICU and, if so, whether specific activities cause them.

2 Hierarchical / mixed-models regression

Hierarchical (mixed)modeling is a regression technique that exploits intra-class clusteringof data to generatemore
preciseestimatesof the fixed-effectsparametersof a regressionand, additionally, uses this information tocalculate
the variance around the fixed-effects parameters that each cluster introduces in the data [3].

The present data set contained two sources of variation: patients that are randomly included in the study and hos-
pital rooms that have unique properties thatmay affect sleep quality ratings of the patients in ways that should be
prevented from affecting the analysis. We therefore specified a random effects structure that contained a random
intercept for rooms within hospitals and a random intercept for patients. Note that preliminary analyses high-
lighted that a random intercept for hospitals was not necessary for an adequate model fit.

We transformed the data to grand-mean centered and scaled scores for all acoustic variables because some of
those were on different magnitudes of scales. Moreover, scaling also reduces effects of multicollinearity. We used
R (version 3.4.1; [4]) and lme4 (version 1.1-14) for the hierarchical mixed-models regressions. Model selection was
supported by the glmulti package (version 1.0.7) and least-squares means were calculated using the effects pack-
age (version 3.1-2). For the calculation of R2glmm based on Nakagawa and Schielzeth [5], we used the piecewiseSEM
package (version 1.2.1). Existence of influential data was assessed using the influence.ME package (version 0.9-9;
[6])

Figure 6 shows, as an example, the relationship between sleep quality determined using the RCSQ and one of
the selected acoustic parameters: A-weighted sound–pressure level (LAeq). The scatter plot shows considerable
variability in RCSQ scores: that is, patients indicated bad sleep quality for low average SPLs as well as for high
average SPLs.
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Figure 6: An example scatter plot of LAeq against sleep quality for the sleep quality measurements obtained for the
individual rooms (with hospitals in separate panels) to highlight the variability in sleep quality scores measured
using the RCSQ. Colors and shape indicate individual roomswith simple regression lines for each room in the same
color; the blue regression line is the overall regression for the respective hospital. The scatter plot is based on
untransformed data.

2.1 Model selection procedure

The current exploratory modeling approach is different from a confirmatory study where theory dictates which
parameters are important because in the present study we explored which parameters were relevant rather than
confirming that specific parameters affected sleep quality. We therefore worked from the assumption that the
best fitting statistical model would have the most explanatory power to indicate, in the present data set, which
acoustic parametersmost strongly affected sleep quality. This approach typically requires that a subset of relevant
parameters is selected from a larger set of candidate parameters.

In regression analyses this selection is often performed based on stepwise backward regression by fitting a full
model and then, one by one, eliminating non-significant predictors. Thismethod, however, is known to be fraught
with problems [7]. The most relevant problems are that the stepwise regression inflates R2 values and yields con-
fidence intervals that are falsely narrow and affect p-values negatively [7], and that the procedure does not neces-
sarily find the best fitting model [8].

We therefore chose to use a model-selection procedure based on minimizing the (sample size corrected) Akaike
information criterion (AICc) [8–10] to find themodel with the least amount of parameters having the best explana-
tory value as indicated by the lowest AICc. The resulting model is presented in the main body of the article and
below we elaborate onmodel fit and diagnostics.

2.2 Model fit and diagnostics

In normal, simple or multiple, regression, model fit is assessed using (adjusted) R2 which is a value that can be
interpreted as the percentage of explained variance. For mixed-effects regression such an assessment of model fit
is more difficult because it can be implemented in a number of ways and is known to have theoretical problems
[5]. Based on a series of requirements for an ideal R2 score, Nakagawa and Schielzeth [5] therefore proposed two
R2 values applicable to (generalized) linear mixed models: the marginal R2 that reflects explained variance based
only on the fixed effects of a mixed-effects regression, and the conditional R2 that incorporates the entire model in
its score.
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Table 1: Model summary of the best-fitting model (based on minimizing the AICc) for the patients’ RCSQ scores
including the random effects.

Model term Estimate SE t statistic 95% CI

Intercept 5.209 0.257 20.294 [4.7, 5.7]
sexF 1.247 0.384 3.246 [0.5, 2]
L90 -0.505 0.197 -2.559 [-0.9, -0.1]
NumRestPeriod 0.533 0.180 2.964 [0.2, 0.9]
Patients 0.260

Random intercept
Rooms 0.399
Residual error 2.149

For the model that we selected as best model, these scores were R2glmm(m) = 0.1 and R2glmm(c) = 0.2. These scores
indicated that the model did not explain a lot of the variance in the data. The relatively low R2glmm(c) reflect that
variance remained in the data that was not explained by fixed or random effects. This implies that other factors
may have affected patients’ sleep scores that we have not yet considered. We further evaluatedmodel fit using the
common-place residual plots (see Figure 7). The visual analysis did not highlightedproblemswith the assumptions
of the regression model.

Note thatmodel-selection procedures based on information criteria typically result in a set of candidate bestmod-
els that should be evaluated for their relative merit(s) based on theoretical and statistical grounds. The present
analysis indeed proposed a model involving the SOFA score as additional predictor as best fitting model with the
lowest AICc. The estimated slope for the SOFA score, however, was not significant and the relative improvement
in model fit was not significant either (as determined using a Loglikelihood Ratio Test; p > 0.05). Therefore, we de-
cided to remove theSOFA score from the set of selectedpredictors despite its theoretical relevance. The theoretical
relevance arises fromearlier research that has shown that disease severity canbe related to noise disturbances due
to, for instance, increased alarms and activity around a more severely ill patient [11]. The decision to remove the
SOFA score from themodel left gender as the only patient-related parameter that influenced sleep quality.

2.3 Influential data

Finally, we verified whether specific data points, for instance, data from a specific patient or a specific room, had
excessive influence on the regression estimation by having data points that were too close or too far away from
the estimated regression equation. For mixed-effects models, determining influence and leverage is, again, more
complicated than for normal (simple ormultiple) regressionbecausewhen calculating values like dfbetas or Cook’s
distances [12, 13] we needed to consider that data points were part of a group of data points that belong to a room
or a patient. Nieuwenhuis and colleagues [6] developed an R package that enables calculating these influence and
leverage scores using a leave-one-out approach on pre-specified levels of analysis.

For the (hierarchical) level of patients, we found that data of two participants was often flagged as having passed
the cutoff value for the various scores (e.g., see Figure 8 for a visualization of Cook’s distance). When we removed
the data from that participant and refitted the model, we observed that all slopes in the model reduced in size (to
1.08, -0.43, and0.38 for females, L90, andnumber of restful periods, respectively) but did not change in significance.
We thereforedecided tokeep theseparticipants included thedata. For the level of rooms,we foundsimilar changes
in the slopes that, again, did not affect significance.
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Figure 7: A series of model-diagnostic plots on the model residuals illustrate (top left to bottom right) a random
distribution of the residual error terms, the model fit, no discernable relation between fitted values and residual,
and normally distributed residuals evidenced by a Q-Q plot and a histogram.

site4_00003
site1_00004
site5_00009
site1_00016
site1_00009
site3_00015
site4_00002
site6_00010
site3_00014
site4_00005
site6_00002
site1_00015
site6_00003
site2_00002
site2_00000
site3_00003
site4_00000
site1_00011
site1_00006
site3_00010
site1_00019
site1_00014
site1_00017
site6_00004
site1_00013
site2_00001
site3_00017
site5_00018
site1_00018
site1_00008
site1_00010
site3_00006
site6_00005
site5_00010
site5_00017
site2_00004
site5_00013
site4_00007
site3_00001
site4_00004
site3_00000
site1_00005
site3_00011
site5_00000
site1_00020
site6_00008
site3_00007
site6_00012
site3_00002
site5_00012
site2_00003
site3_00004
site1_00007
site5_00005
site5_00006
site5_00011
site4_00001
site5_00008
site5_00015
site4_00009
site4_00008
site3_00013
site5_00004
site5_00016

0.00 0.05 0.10 0.15 0.20 0.25

Cook's distance

P
at

ie
nt

Figure 8: Cook’s distance calculated for individual patients for all variables in the selected regressione equation.
Data points highlighted in red triangles indicate data points with excessive influence on the fit of the model using
the conventional criterion of 4 divided by the sample size.

7



3

4

5

6

7

30 35 40 45 50

L90 (dB)

R
C

S
Q

 (
0−

10
)

Number of restorative periods per hour 1 8.8 16 24 32
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that the data are visualized in back transformed values. The values for number of restorative periods are arbitrarily
chosen values that represent the entire spectrum of values observed in the data.

2.4 Combined effect of acoustic predictors

For improved understanding of the combined effect on sleep quality of the acoustic predictors L90 and number of
restorative periods, we created amarginal effects plot that displays how (predicted) sleep quality would change as
a result of changes in value of the acoustic predictors (while averaging over the other predictors). Figure 9 shows
the predicted sleep quality for various ranges of background sound (L90 on the x-axis) and numbers of restorative
periods (in separate lines). This figure shows that under the best circumstances (i.e., many restorative periods
and low background-noise levels), sleep quality was estimated at approximately 7.3 and the worst sleep quality is
predicted for a low rate of restorative periods and high background noise.

2.5 Individual RCSQ items

The above analyses as well as those in the main text were performed on the overall score of the RCSQ based on
the average of the items’ scores. However, the items of the RCSQ were designed in such a way that they correlate
well with specific sleep stages and/or aspects of sleep. That is, items 1 - 5 gather scores on the following aspects of
sleep, respectively: sleep depth, falling asleep, number of awakenings, percent of time awake, and quality of sleep.

It could be that the scores regarding each of these aspects were affected by different parameters. We therefore
ran an automated-selection procedure on each of the individual items’ data to determine which of the available
parameters were selected as part of the best model for an item. Most model-selection procedures resulted in a
best model that incorporated the same set of parameters as the main model presented above. We therefore only
verbally discuss the exceptions and conclude that in the present data the overall RCSQ score correlated well with
the scores for its items.

Newly introduced parameters were all based on patients’ data, for instance, whether or not a patient was on venti-
lator support (relevant for number of awakenings and quality of sleep), duration of stay in hospital before ICU ad-
mittance (relevant for sleep depth and number of awakenings), and duration of the stay in the ICU (for percentage
of time awake). Being on invasive ventilator resulted in significantly fewer awakenings during the night whereas
quality of sleep was significantly negatively affected by being on a non-invasive ventilator.

We therefore concluded that the overall RCSQwaswell supportedby the scores on the individual items. That is, the
statistical model for the total score mostly comprised the same parameters as the models for the individual items
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rather than that the items’ models containedmany other parameters.
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