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1 STROBE statement 
 

STROBE Statement—Checklist of items that should be included in reports of cohort studies  
 Item 

No Recommendation 
 Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the abstract (DONE, 

p1, p6) 

(b) Provide in the abstract an informative and balanced summary of what was done and what 
was found (DONE, p6) 

Introduction 
Background/rationale 2 Explain the scientific background and rationale for the investigation being reported (DONE, 

p8-9) 

Objectives 3 State specific objectives, including any prespecified hypotheses (DONE, p9) 

Methods 
Study design 4 Present key elements of study design early in the paper (DONE p9-14) 

Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, 
follow-up, and data collection (DONE p9-12) 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. 
Describe methods of follow-up (DONE p10) 

(b) For matched studies, give matching criteria and number of exposed and unexposed N/A 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect 
modifiers. P9-11, supplement section 4 

Data sources/ 
measurement 

8*  For each variable of interest, give sources of data and details of methods of assessment 
(measurement). Describe comparability of assessment methods if there is more than one 
group (DONE p9-11 and supplement section 4) 

Bias 9 Describe any efforts to address potential sources of bias DONE p10-13,  

supplement sections 6-9 

Study size 10 Explain how the study size was arrived at DONE p9-10 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which 
groupings were chosen and why supplement section 4 and section 7.5 

Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding DONE 
p11-13 and supplement sections 6 – 9  

(b) Describe any methods used to examine subgroups and interactions p12 

(c) Explain how missing data were addressed DONE p11-14 

(d) If applicable, explain how loss to follow-up was addressed N/A 

(e) Describe any sensitivity analyses DONE p13-14 

Results 
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Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, 
examined for eligibility, confirmed eligible, included in the study, completing follow-up, and 
analysed DONE Figure e9 

(b) Give reasons for non-participation at each stage Figure e9 

(c) Consider use of a flow diagram Figure e9 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information 
on exposures and potential confounders Table 1 Table e4 

(b) Indicate number of participants with missing data for each variable of interest N/A 

(c) Summarise follow-up time (eg, average and total amount) N/A 

Outcome data 15* Report numbers of outcome events or summary measures over time p13 p15 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 
precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and 
why they were included 14-17 

(b) Report category boundaries when continuous variables were categorized supplement p11-
17 

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful 
time period DONE, absolute risk / RR / OR reported  

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity 
analyses p14 p 17 

Discussion 
Key results 18 Summarise key results with reference to study objectives p17 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. 
Discuss both direction and magnitude of any potential bias p17-20 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity 
of analyses, results from similar studies, and other relevant evidence p19-20 

Generalisability 21 Discuss the generalisability (external validity) of the study results p17-20 

Other information 
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, 

for the original study on which the present article is based p4 
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2 Target trial details: Secondary thresholds 

The primary thresholds focused on oxygenation via the saturation-to-inspired oxygen ratio (SF). We also 

considered additional thresholds to capture other important dimensions of respiratory failure.  

2.1.1 Respiratory rate 

Respiratory rate is a common element in criteria for invasive ventilation found in observational (1–3) and 

randomized (4–6) studies. We included invasive ventilation thresholds with the same degree of hypoxemia (SF 

ratio of less than 98) and different degrees of tachpynea (respiratory rate of 25 breaths per minute or more 

versus 35 breaths per minute or more).  

2.1.2 Work of breathing 

Increased work of breathing is commonly mentioned in qualitative studies of the criteria for invasive 

ventilation.(7,8) We included thresholds of an SF ratio less than 98 with and without abnormal work of 

breathing. This variable was only available in the MIMIC cohort. 

2.1.3 Duration 

Observational research has found that a failure to improve from a certain degree of severity is associated with 

subsequent invasive ventilation.(2,9) We investigated the importance of duration with thresholds requiring an 

SF ratio less than 98 for one measurement, for two consecutive hours, and for four consecutive hours. 

2.1.4 Trajectory 

One motivation for the use of invasive ventilation is to avoid a more dangerous deterioration if the current 

clinical trajectory were to continue. We used linear extrapolation of the current and immediately prior SF 

ratios to predict the next SF ratio and included both a moderate trajectory (SF ratio predicted to be less than 

88 within 60 minutes) and a severe trajectory (SF ratio predicted to be less than 88 within 30 minutes). 
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2.1.5 Multi-organ involvement 

The criteria for invasive ventilation used in many trials of respiratory support include elements of respiratory, 

neurologic, and hemodynamic function.(5) Criteria are usually satisfied by dysfunction in any one of the three 

areas. We included a threshold focused on single organ failure (criteria met for any of those three areas) and a 

threshold requiring dual-organ failure (respiratory and either neurologic or hemodynamic criteria met). The 

organ system-based criteria were as follows: respiratory criteria = 2 of RR > 40, saturation < 90 on inspired 

oxygen 0.90 or higher, abnormal work of breathing, or pH < 7.35; hemodynamic criteria = use of vasopressors; 

neurologic criteria = Glasgow Coma Scale < 9 

2.1.6 Usual care 

In order to compare the outcomes of each threshold to usual care, we also included a threshold based on 

usual care. This was done by incorporating invasive ventilation as a binary variable into the confounder model, 

which allowed for us to predict at each clinical measurement whether or not a patient was likely to be 

invasively ventilated before the next measurement. Those predictions were incorporated in the Monte Carlo 

integration as described in section 10.1 to allow for estimation of the probability of invasive ventilation and 

mortality under usual care, using the exact same clinical trajectories across which all the other thresholds 

were compared. 

 

 



8 
 
2.2 Table e1: Target trial characteristics 

 Target trial specification Target trial emulation 
Eligibility 
criteria 

Inclusion 
• Age 18 years or older 
• Admission to ICU within prior 24 hours 
• Receiving oxygen via non-rebreather mask, high-flow nasal 
cannula, or non-invasive ventilation with an inspired oxygen 
fraction of 0.4 or greater 

Exclusion 
• GCS motor score (< 4), respiratory acidosis (pH ≤ 7.20 with 
pCO2 ≥ 60), or clinical judgement 
• Care limitations restricting use of invasive ventilation 
• Prior use of invasive ventilation during same ICU admission 
• Admitted to ICU directly from operating room 
• Tracheostomy in situ 
• Prior eligible ICU admission 

Same, except:  
• No ability to incorporate subjective 
clinical judgement of a lack of equipoise 

 

Time zero Treatment assignment Eligibility criteria satisfied 
Treatment 
strategies 

Each strategy is a threshold which, if met, prompts intubation and 
invasive ventilation within 1 hour by the clinical team. Thresholds 
are active for 96 hours after which usual care prevails. 
 
Hypoxemia: 
• SF ratio less than 88 
• SF ratio less than 98 
• SF ratio less than 110 

Tachypnea: 
• SF ratio less than 98 and respiratory rate greater than 25 
• SF ratio less than 98 and respiratory rate greater than 35 

Abnormal work of breathing: 
• SF ratio less than 98 and abnormal work of breathing 

Duration: 
• SF ratio less than 98 for 2 consecutive hours 
• SF ratio less than 98 for 4 consecutive hours 

Trajectory: based on linear extrapolation of the SF ratio 
• SF ratio less than 88 in 60 minutes  
• SF ratio less than 88 in 30 minutes  

Multi-organ involvement: based on randomized trial criteria* 
• Respiratory, neurologic, or hemodynamic failure 
• Respiratory and either neurologic or hemodynamic failure 

Same, except: 
• Immediate invasive ventilation 
• No protocol deviation possible 

Treatment 
assignment 

Each patient randomized to one threshold Each threshold is applied to every patient in 
sequence. Treatment assignment will be 
considered “at random” conditional on 
measured confounders. Bayesian modeling 
used to ensure appropriate quantification of 
uncertainty 

Outcomes Mortality at 28 days Same 
Follow-up Starts at baseline and continues up to 28 days Same 
Contrasts Intention-to-treat, per-protocol Per-protocol 
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3 Cohort construction – MIMIC-IV 

Cohort construction was carried out in a similar fashion to our complementary investigation of whether 

patients receive invasive ventilation after they meet physiologic thresholds.(10) As a result, the text below is 

intentionally similar to the text describing cohort construction in the supplement of that manuscript. The 

names of tables and variables from the datasets will be written in italics. Where specific identifying numbers 

(eg itemid) were used in the MIMIC cohort we include them here, to facilitate transparency. 

3.1 Eligibility assessment 

Eligibility assessment required knowledge of a patient’s oxygen device and their fraction of inspired oxygen at 

the same moment. Both MIMIC-IV and AmsterdamUMCdb data include data points timestamped to (at least) 

the nearest minute, which introduces irregular sampling. The observations of oxygen device and fraction of 

inspired oxygen may not be concurrent. We carried forward observations of fraction of inspired oxygen and 

oxygen device for up to 8 hours.(15) The patient was deemed eligible at the first time within the first 24 hours 

of ICU admission where the fraction of inspired oxygen was 40% or more while using a non-rebreather mask, 

high flow nasal cannula, or non-invasive ventilation.  

3.2 Specific variables 

Below we outline the decisions made to gather specific variables from the MIMIC-IV data tables. 

3.2.1 Tracheostomies 

Tracheostomies were identified by an oxygen device charting of “Tracheostomy tube” or “Trach mask”. Any 

patient with a tracheostomy charted within the first 144 hours following ICU admission was excluded from the 

study.  

3.2.2 Goals of care 

Goals of care were identified from chart events (itemid 228687) where clinicians recorded updates about the 

goals of care. Patients with “"Comfort measures only" or "DNAR (Do Not Attempt Resuscitation) [DNR] / DNI" 



10 
 
charted at any time during their admission were excluded. However, very few patients had anything recorded 

under this variable. The clinical notes were not available. The lack of better prospective information on goals 

of care likely made it more difficult for the confounder model to predict invasive ventilation or death (before 

invasive ventilation), and remains a limitation of the study. However, the unintentional inclusion of patients 

who were “randomized” by their goals of care to a “never” strategy of invasive ventilation provides the 

confounder model with information about what happens to patients who do not undergo invasive ventilation. 

3.2.3 Race/ethnicity 

The eight race/ethnicity categories (“WHITE”, “UNKNOWN”. “BLACK/AFRICAN AMERICAN”, “ASIAN”, 

“HISPANIC/LATINO”, “OTHER”, “UNABLE TO OBTAIN”, “AMERICAN INDIAN/ALASKA NATIVE.”) were collapsed 

into six categories because the American Indian / Alaska Native category had too few patients to report, in the 

spirit of deidentification. The six categories were White, Black, Asian, Hispanic, Other (including American 

Indian / Alaska Native) and Unknown. 

3.2.4 Care unit 

The 9 potential care units ("Coronary Care Unit (CCU)”, "Medical Intensive Care Unit (MICU)”, "Surgical 

Intensive Care Unit (SICU)", "Trauma SICU (TSICU)", "Medical/Surgical Intensive Care Unit (MICU/SICU)", 

"Cardiac Vascular Intensive Care Unit (CVICU)", "Neuro Surgical Intensive Care Unit (Neuro SICU)", "Neuro 

Stepdown", "Neuro Intermediate") were collapsed into three: Medical-Surgical, Cardiac, and Neuro-Trauma.  

3.2.5 Fraction of inspired oxygen 

Fraction of inspired oxygen was taken directly from the corresponding field where available. If no charted 

fraction of inspired oxygen was available, and the patient was receiving oxygen by non-rebreather mask, face 

mask, or nasal prongs, then the oxygen flow was used to estimate the fraction of inspired oxygen by a 

validated equation(16): 21% + oxygen flow rate in L/min*3. 
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3.2.6 Work of breathing 

The work of breathing variable was composed from different fields relating to the pattern of respiration (chart 

event IDs 229322, 223990, 229323). Patterns described as 'Dyspneic', 'Labored', 'Shallow', 'Apneic', 'Agonal', 

'Discoordinate', 'Gasping efforts', 'Prolonged exhalation', 'Shallow', 'Irregular', 'Nasal flaring', 'Cheyne-Stokes', 

'Accessory muscle use/retractions', 'Frequent desaturation episodes', 'Inability to speak in full sentences', and 

'Active exhalation' were classified as abnormal. Normal observations included 'Regular' or 'Normal'. The chart 

event ID 229323 was labeled the “Current Dyspnea Assessment” and recorded dyspnea on a scale from 0 to 

10. Dyspnea levels of 'Moderate - 4', 'Moderate - 5', 'Moderate - 6', 'Moderate - 7', 'Severe - 8', 'Severe - 9', or 

'Severe - 10' were classified as abnormal, while dyspnea levels of 'None - 0', 'Mild - 1', 'Mild - 2', or 'Mild - 3' 

were classified as normal. 
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4 Cohort construction – AmsterdamUMCdb 
4.1 Eligibility assessment 

This was done in the same manner as for MIMIC-IV. Here we comment on differences. 

4.2 Validated observations 

The AmsterdamUMCdb cohort includes a large number of observations gathered automatically from the 

monitors and the ventilators. For every observation, there is a field describing if the value was “registered” or 

validated by a clinician. As in the code generated in datathons focusing on the AmsterdamUMCdb data 

(https://github.com/AmsterdamUMC/AmsterdamUMCdb), we opted to include only validated data in the 

cohort. There were two reasons (1) better assurance of its veracity and (2) without filtering, the data was too 

voluminous with observations occurring as frequently as every minute for certain variables.   

4.3 Specific variables 
4.3.1 Table e2: Oxygen devices 
We used the following translations for oxygen devices: 

 Category ID Dutch English 

8189 Toedieningsweg 1 Diep Nasaal 
Nasal oxygen catheter (ie 
for nasal suctioning) 

8189 Toedieningsweg 2 Nasaal 
Nasal oxygen cannula (low-
flow) 

8189 Toedieningsweg 3 Kapje Venturi mask 

8189 Toedieningsweg 4 Kunstneus 

Heat- and moisture 
exchanger that you connect 
to the tracheostomy or 
tube when the patient is 
disconnected from the 
ventilator 

8189 Toedieningsweg 7 O2-bril 
Nasal oxygen cannula (low-
flow) 

8189 Toedieningsweg 8 Kinnebak Face tent  

https://github.com/AmsterdamUMC/AmsterdamUMCdb
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8189 Toedieningsweg 9 Nebulizer Nebulizer 

8189 Toedieningsweg 10 Waterset Bag-valve mask 

8189 Toedieningsweg 11 Trach.stoma Tracheal stoma 

8189 Toedieningsweg 12 B.Lucht Room air  

8189 Toedieningsweg 13 Ambu Ambubag 

8189 Toedieningsweg 14 Guedel Oropharyngeal airway 

8189 Toedieningsweg 15 DL-tube Double-lumen tube 

8189 Toedieningsweg 16 CPAP CPAP mask 

8189 Toedieningsweg 17 Non-Rebreathing masker Non-rebreather mask 

8189 Toedieningsweg 18 Spreekcanule 
Speaking valve for 
tracheostomy 

 

4.3.2 Goals of care 

Goals of care were encoded under a listitems item called “Beleid” (“policy”). There were three values: 1 (no 

restrictions), 2 (restrictions such as no dialysis, no CPR, no ventilation), and 3 (no escalation / terminal). For 

many patients there was no “Beleid” observation available. In keeping with goals of care as an exclusion 

criteria for the study (as opposed to an inclusion criteria), we excluded patients with goals of care type 3.  

4.3.3 Operative 

Patients with operative APACHE diagnoses were excluded. 

4.3.4 Invasive ventilation 

Invasive ventilation start times were identified by the earliest of (1) charting of an intubation procedure in the 

procedureorderitems table or (2) start time of an episode of invasive ventilation from the processitems table. 

4.3.5 Care unit 

Patients were cared for in either the intensive care unit (ICU) or the MCU, which was a “step-down” level unit.  
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5 Using the G-formula in this study: rationale and explanation 

There are two primary analytic options for evaluating prespecified dynamic treatment regimens in the setting 

of time-varying confounding: inverse probability weighting with clones and g-computation.(12)  By dynamic 

treatment regimen, we mean a sequential treatment assignment that follows a pre-determined function of 

baseline and time-varying patient information. For this study, we selected G-computation in order to use a 

Bayesian approach with a prespecified observation schedule. The G-formula above breaks into two parts, the 

confounder model and the conditional outcome model. To mitigate the possibility of model misspecification, 

we used non-parametric Bayesian models for both the conditional outcome and time-varying confounder 

models.(13) We will describe both models in detail, starting with the confounder model. All code is available at 

https://doi.org/10.5281/zenodo.7314132.  

6 Confounder model  

The confounder model aims to describe the variables that change over time and are associated with both the 

use of invasive ventilation and mortality. Baseline confounders are addressed with the conditional outcome 

model. Using domain expertise and prior research, we selected several physiologic variables as confounders 

(see Figure).(1–3,14–16) We selected respiratory rate, peripheral oxygen saturation, heart rate, systolic blood 

pressure, fraction of inspired oxygen, Glasgow Coma Scale, lactate, partial pressure of carbon dioxide, pH, 

vasopressor use, and oxygen device. For the MIMIC cohort we included abnormal work of breathing as an 

additional covariate, and for the AmsterdamUMCdb cohort we included partial pressure of arterial oxygen. For 

both cohorts we also incorporated binary variables of ICU discharge, invasive ventilation, and death before 

invasive ventilation. For the confounder model we used a multitask Gaussian process with a linear covariance 

structure because it is one of the few models that is generative, flexible, and can output multiple correlated 

time series variables.  

https://doi.org/10.5281/zenodo.7314132
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6.1 Figure e1: Conceptual model 

 

6.2 Multitask Gaussian processes in clinical medicine 

Gaussian processes are a class of model well-suited to describing multivariable clinical time series, because 

they easily accommodate irregularly sampled data, learn correlations between variables, and quantify the 

extent to which prior observations influence future observations. They are scientifically appealing because 

each particular realization of a Gaussian process is stochastic, analogous to each individual patient’s 

multivariable trajectory in the ICU, but every realization is bound by the same underlying distribution of 

covariance between variables and across time, analogous to the underlying physiologic process of critical 

illness. They allow for prior information to guide the timescales over which past variables influence future 

variables, but they do not require arbitrary decisions such as restricting variables to linear relationships, or 

aggregating data into discrete time points. For further details and introduction to Gaussian process modeling, 

we suggest the Bayesian Data Analysis textbook by Gelman et al and the blog posts of Betancourt.(17,18) 

Acute hypoxemic respiratory failure

Invasive 
ven�la�on Mortality

Baseline covariates
(age, sex, 

comorbidi�es)

Time-varying covariates
(respiratory rate, frac�on of 

inspired oxygen, work of 
breathing, oxygen device, 

hemodynamics, labs…)

Baseline covariates
(cause, goals of care, 
detailed prognosis of 

comorbidi�es…)
Time-varying covariates
(pa�ent experience of 

dyspnea, subtle changes in 
mental status, logis�cal 

factors…)

Measured 
covariates

Unmeasured 
covariates
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6.3 Hilbert-space Gaussian process approximation 

A pure Gaussian process has a computational time that scales with the cube of the number of observations 

(N^3). For our dataset with hundreds of thousands of observations, this is impractical. Fortunately, Bayesian 

biostatisticians Riutort-Mayol and Vehtari have described an accurate Hilbert space approximation to Gaussian 

processes.(19) We used this approximation. 

The Hilbert space approximation relies on specification of an appropriate boundary constant C and number of 

basis functions M. The choice depends on the underlying length constant ρ of the Gaussian process that best 

fits the data and the type of Gaussian process covariance function chosen. We chose a squared exponential 

covariance function, boundary conditions C = 1.25 and M = 20, which meant that the smallest length constant 

ρ (normalized by the half-range of the data) that we could estimate was 0.11. As long as our estimated length 

constant was larger, the approximation will be accurate to the fit provided by a true Gaussian process.  

6.4 Data transformations  

In order to facilitate model fitting, we performed some basic data transformations. Heart rate, respiratory 

rate, systolic blood pressure, lactate, partial pressure of carbon dioxide, partial pressure of arterial oxygen, 

and pH were all transformed with natural logarithms. Fraction of inspired oxygen, saturation, and Glasgow 

Coma Score were all treated as continuous interval data and transformed with the inverse logit function 

parameterized according to the interval of each variable.(20,21) After transformation, all of the above 

continuous variables were centered at the transformed mean and scaled by the transformed standard 

deviation. Time was transformed to days as a continuous variable. 

To better approximate the clinical reality that some variables are only recorded when they change, we filled in 

measurements of inspired oxygen fraction, oxygen device, vasopressor use, ICU discharge status, invasive 

ventilation status, and death status every 2 hours in addition to the measurements already present in the 

data. This allowed for the inclusion of these variables in the Gaussian process. 
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6.5 Model description 

We used a Gaussian process to fit the function μ(𝑡𝑡) = �⃗�𝑦 for time 𝑡𝑡 and multivariable clinical time series �⃗�𝑦 ∈

𝑅𝑅𝑑𝑑. For the confounder model, 𝑑𝑑 =  16 (AmsterdamUMCdb) or 17 (MIMIC-IV). (heart rate, respiratory rate, 

systolic blood pressure, mean blood pressure, peripheral oxygen saturation, fraction of inspired oxygen, 

partial pressure of carbon dioxide, partial pressure of arterial oxygen, pH, GCS, non-invasive ventilation use, 

non-rebreather mask use, invasive ventilation, ICU discharge, and death for both cohorts; partial pressure of 

arterial oxygen for AmsterdamUMCdb, and abnormal work of breathing and high-flow nasal cannula use for 

MIMIC-IV). The components of �⃗�𝑦 were the latent variables underlying the observed clinical variables. For 

continuous variables, the observed variable differs from the latent variable by independent identically 

distributed random noise with standard deviation σ. For binary variables, the observed variable is a random 

binary variable (0 or 1) with underlying probability given by the latent variable including its offset via the 

inverse logit transformation. This innovation allows for covariance between binary and continuous variables. 

A Gaussian process μ ∼ GP(𝑚𝑚,𝑘𝑘) is specified by the mean function 𝑚𝑚 and covariance function 𝑘𝑘. We used the 

squared exponential covariance function: 

κ(𝑡𝑡1, 𝑡𝑡2) = α𝑒𝑒
−(𝑡𝑡1−𝑡𝑡2)2

ρ  

This covariance function generates smooth curves with “wiggliness” based on the length-scale ρ and height 

based on the magnitude α. The length-scale ρ dictates the time over which the Gaussian process “forgets” 

prior values. We assumed that the hyperparameters ρ and α were constant over all patients in the cohort and 

over the entire observation time of up to 96 hours.  

6.5.1 Mean function 

We used a time-invariant mean function for each latent variable. We included eleven covariates via linear 

regression for each latent variable. This included five categories of age, sex, and then five additional baseline 
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variables which usually corresponded to the five quintiles of the baseline value for the latent variable in 

question. For example, the mean heart rate for a given patient was a linear function of their age, sex, and the 

quintile of their baseline heart rate. The covariates were selected using clinical domain expertise. 

6.5.2 Prior distributions 

While flexibility is a strength of Gaussian processes, it can also doom computational efforts to fit the model 

unless domain expertise is used to supply informative priors for the hyperparameters ρ and α. The length-

scale in particular requires informed prior distributions, else any efforts to fit the model will tend towards 

either a length scale of infinity (the function is equal to the mean function at every point with the addition of 

uncorrelated noise) and a length-scale of zero (the function is infinitely wiggly with no memory). Based on the 

work of Cheng et al with MIMIC-III data, we chose a lognormal prior centered at approximately 𝑒𝑒−1.5 = 0.22 

with standard deviation 0.2 that amounted to a 95% probability of the timescale being between 7 and 16 

hours.(22) 

For the magnitudes, we used less informed lognormal priors with standard deviations of 1 for continuous 

variables and 2 for binary variables. The means of the magnitudes, noise, and offsets were placed near the 

final estimated means using a trial run on a subset of the data, because the speed of fitting the model on the 

entire dataset was running up against the 24-hour time limit imposed by our computer cluster. This introduces 

an empirical Bayesian element into the model, and may cause us to overestimate the certainty of our results. 

However, when the model was run with prior means uninformed by the data on smaller subsets of the cohort, 

there were no difficulties in fitting the model and the results matched. The prior standard deviation for the 

noise was 1 on the lognormal scale. The prior standard deviation for the offsets was set at 10.  

The Hilbert space Gaussian process approximation uses basis functions that are specific to each patient and 

variable. The prior distributions for these basis functions were set to standard normal distributions.(19) The 
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mean function covariates had normal distributions centered at 0 with standard deviation 0.5 as priors. For the 

linear covariance matrix prior, we used the Cholesky decomposition of the LKJ(3) matrix. 

6.5.3 Computational details 

We used Hamiltonian Monte Carlo sampling via Stan to fit the Hilbert space Gaussian process 

approximation.(23) The program was written in Stan and is available at 

https://doi.org/10.5281/zenodo.7314132. The program was optimized for faster fitting by (1) use of the 

reduce_sum function allowing for within-chain parallelization and (2) extensive use of the offset and multiplier 

functionality when declaring parameters. This had the unfortunate consequence of reducing code readability.  

In order to fit the model we used the Compute Canada cluster, parallelizing each chain over 80 cores. The 

Compute Canada cluster has a maximum runtime of 24 hours. In order to achieve convergence and sampling 

within 24 hours on the largest possible sample size, we had to initialize chains to the center of their prior 

distributions. Chains initialized randomly required longer warmup runs in order to sample effectively, and did 

achieve convergence when run on smaller subsets of the population (eg 400 patients instead of 1100-1200). 

We ran 200 iterations warmup and 200 iterations sampling per chain, 4 separate chains for each model fit. We 

did not need to increase the target acceptance rate (adapt_delta) parameter above the default of 0.8.  

6.6 Model outputs and diagnostics 

For the MIMIC-IV cohort, we had to split the sample randomly into three folds of approximately 1100 patients 

each and run the confounder model separately on each fold. With this approach, each chain parallelized 

across 80 cores from one node took approximately 20 hours to warmup and sample 200 iterations. For the 

AmsterdamUMCdb cohort we were able to run the model on the entire 1279 person cohort in 22-24 hours per 

chain. Therefore we used 3*4*20*80 + 4*22*80 = 26,240 core-hours to generate 800 samples per cohort.  

For all chains in all folds, there were no divergent transitions and the estimated Bayesian fraction of missing 

information was low. A subset of basis function parameters (eta) had a low effective sample size. This is not 

https://doi.org/10.5281/zenodo.7314132
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surprising because if a patient has no or few measurements of a given variable, the corresponding basis 

functions will have minimal information beyond the standard normal distribution prior. A subset of 

parameters also had an R-hat value of greater than 1.05, suggesting incomplete mixing. Ideally, we would have 

been able to run more samples to address this issue, but fortunately we also used future-held-out validation 

to evaluate the confounder model fit as well. We did not have access to sufficient computing resources to run 

more samples from the model. 

The trace plots generally sufficient mixing, with some variables showing a bit more autocorrelation than would 

be ideal. Some examples shown below. 

6.6.1 Figure e2: trace plots for length-constant ρ 

 

Caption: This figure shows the trace of the posterior samples of the length constant for MIMIC-IV analysis (left) and 
AmsterdamUMCdb analysis (right).  

6.7 Clinical validity  

In this study, the confounder model has two (related) roles: first, to describe the time-varying confounders 

between exposure and outcome, and second, to generate realistic clinical trajectories for the integration 

required to calculate the G-formula. The validity of the final results depends in part on the validity of the 



21 
 
confounder model. Therefore, we investigated the predictive validity of the confounder model through 

quantitative and qualitative means. 

6.7.1 Correlation between variables 

First, we inspected the correlation matrices of the confounder model. These showed that the Gaussian 

process, without any prior information about the relationships between variables (we used a skeptical LKJ(3) 

prior), was able to identify clinically relevant correlations. For example, respiratory rate is correlated with 

inspired oxygen fraction and inversely correlated with peripheral oxygen saturation in both cohorts. The 

MIMIC-IV correlation matrix is shown as an example. 

6.7.2 Figure e3: correlation matrix across parameters – MIMIC 

 

Caption: This figure shows the correlation matrix between the posterior parameters for all of the time-varying confounding 
variables. Correlated pairs are marked with blue, anticorrelated with red, and no correlation with white. 



22 
 
6.7.3 Future-held-out validation 

We performed future-held-out validation on the same time scale as our proposed target trial observation 

schedule. To do this, we divided the timeline into two-hour time steps from 0 hours to 92 hours. We then used 

the means of the posterior distribution of Gaussian process hyperparameters to fit a Gaussian process to all 

data available up to the start of a time step. We used the means instead of individual hyperparameter draws 

because the posterior distributions of hyperparameters were very tight and it was not computationally 

feasible to validate all time steps for all posterior hyperparameter values. We then used that Gaussian process 

to predict all observations that happened between 1 and 3 hours after the start of that time step. For 

example, we fit a Gaussian process using all data available up until time = 10 hours and then predicted the 

values of all observations made between time = 11 hours and time = 13 hours. Recall that the observation 

schedule uses measurements every 2 hours. For computational reasons, we were able to validate on only 400 

randomly selected patients. This allowed us to compare predictions of both continuous and binary covariates 

from the confounder model to the actual measured values.  

Below we show tables of root-mean-squared error, discrimination, and precision of the variables from each 

confounder model. We also show an example validation trajectory for a single patient, chosen at random from 

the MIMIC-IV cohort.  
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6.7.4 Table e3: Future-held-out validation of confounder model, continuous variables 
 

Variable Observed mean Posterior mean RMSE Coverage (95%) 
MIMIC-IV     
Systolic blood pressure 118.51 117.81 (115.15 to 121) 20.87 (18.93 to 23.84) 0.94 (0.84 to 0.98) 
Respiratory rate 22.63 21.77 (21.07 to 23.35) 6.87 (6.13 to 7.77) 0.94 (0.87 to 0.97) 
Heart rate 94.16 90.23 (88.33 to 96.07) 14.38 (12.36 to 19.32) 0.95 (0.86 to 0.97) 
Peripheral saturation 95.74 94.93 (94.42 to 95.51) 5.07 (4.32 to 6.67) 0.92 (0.84 to 1) 
Inspired oxygen fraction 58.1 50.42 (45.97 to 62.65) 18.2 (14.96 to 26.18) 0.93 (0.74 to 0.97) 
Lactate 2.09 2.11 (1.08 to 3.05) 1.2 (0.14 to 2.35) 0.66 (0 to 1) 
pH 7.38 7.38 (7.33 to 7.44) 0.08 (0.04 to 0.12) 0.82 (0 to 1) 
pCO2 45.05 47.58 (38.7 to 59.8) 13.5 (4.62 to 23.26) 0.79 (0 to 1) 
GCS 13.55 14.23 (13.86 to 14.66) 1.76 (0.81 to 2.57) 0.95 (0.89 to 1) 
     
AmsterdamUMCdb     
Systolic blood pressure 126.23 132.72 (125.37 to 140.6) 27.6 (23.69 to 34.83) 0.94 (0.8 to 0.99) 
Respiratory rate 25.57 23.53 (21.57 to 26.36) 9.79 (7.66 to 12.15) 0.92 (0.81 to 0.99) 
Heart rate 102.05 93.87 (89.97 to 101.2) 15.06 (11.36 to 24.02) 0.93 (0.7 to 0.99) 
Peripheral saturation 95.95 95.82 (95.17 to 96.54) 4.25 (3.12 to 5.85) 0.93 (0.82 to 1) 
Inspired oxygen fraction 57.76 55.09 (50.67 to 59.81) 14.37 (10.68 to 18) 0.95 (0.84 to 1) 
Lactate 2.27 1.55 (0.8 to 2.42) 0.87 (0.18 to 1.87) 0.77 (0 to 1) 
pH 7.36 7.41 (7.37 to 7.44) 0.07 (0.04 to 0.1) 0.94 (0.75 to 1) 
pCO2 41.95 42.17 (38.71 to 45.76) 9.8 (6 to 15.2) 0.89 (0.62 to 1) 
GCS 13.55 13.76 (12.43 to 14.74) 2.23 (0.67 to 5.52) 0.83 (0 to 1) 
pO2 112.39 92.53 (81.48 to 103.9) 37.62 (23.5 to 54.19) 0.94 (0.77 to 1) 
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6.7.5 Table e4: Future-held-out validation of confounder model, binary variables 

Variable 
Observed mean 

probability 
Predicted mean 

probability Discrimination (AUROC) Precision 
MIMIC-IV     
Vasopressor use 0.1565 0.1228 0.903 0.584 
Non-invasive ventilation 0.0442 0.0507 0.891 0.305 
High-flow nasal cannula 0.1761 0.1679 0.876 0.638 
Non-rebreather mask 0.3001 0.3334 0.817 0.637 
Abnormal work of breathing 0.2301 0.2462 0.822 0.582 
ICU discharge 0.0232 0.0200 0.686 0.072 
Death before IMV 0.0018 0.0013 0.779 0.092 
Invasive ventilation 0.0079 0.0069 0.678 0.027 
     
AmsterdamUMCdb     
Vasopressor use 0.1933 0.1608 0.950 0.857 
Non-invasive ventilation 0.1280 0.1323 0.939 0.798 
Non-rebreather mask 0.3372 0.3664 0.947 0.876 
ICU discharge 0.0247 0.0226 0.688 0.053 
Death before IMV 0.0021 0.0013 0.929 0.072 
Invasive ventilation 0.0108 0.0095 0.737 0.029 

 

ICU = Intensive care unit. IMV = invasive mechanical ventilation. AUROC = area under receiver-operating curve. PPV = positive predictive value. The observed and 
predicted means are similar, with the largest relative differences coming in the rare binary events of discharge, death, and invasive ventilation. The 
discrimination is very good for the frequently measured clinical variables (vasopressor use, oxygen devices, work of breathing). The precision is also good for the 
same variables, except for non-invasive ventilation use in MIMIC which has a lower precision. Among the binary event variables, the precision is very low. This 
likely reflects the difficulty of pinpointing a time at which each of those events will happen, in addition to the unmeasured non-physiologic confounding that 
impacts the timing of each transition. This non-physiologic confounding could be anything from unavailability of a bed on the ward for transfer to a sudden shift 
in goals of care.  
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6.7.6 Figure e4: Example validation trajectory 
MIMIC 

 

Caption: This validation trajectory shows the futre-held-out observed data (red) and the predictions (mean = black, 50% credible interval = dark blue, 95% credible interval = light 
blue). The binary variables show only the underlying mean probability of an event (black). The data used for each prediction ends between 1 and 3 hours before each prediction, 
approximating the situation of the q2h observation schedule in the target trial. The figure shows both the strengths and weaknesses of the model. Strengths include the ability 
to follow the arbitrary curves of continuous variables, the state-switching of the binary variables, and appropriate communication of uncertainty where data is sparse (eg blood 
gas results). The weaknesses are that the mean does not vary with time (see slight tendency towards overestimation of respiratory rate and inspired oxygen fraction) and that 
rare binary events are difficult to predict (see icu_dc variable).   
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7 Conditional outcome model 

The conditional outcome model is used to predict the mortality of each patient after observing their target 

trial emulation time series. As a reminder, that time series ends after the patient reaches the end of the 96 

hours without being invasively ventilated, or when the patient is no longer eligible for the treatment rule 

(death before invasive ventilation, ICU discharge, or invasive ventilation). For the conditional outcome model, 

we desired a modelling approach that could accommodate interactions, nonlinearity, provided posterior 

distributions to maintain the Bayesian approach, and had a demonstrated record of efficacy in observational 

causal inference. Bayesian additive regression trees fulfill these criteria.  

7.1 Bayesian additive regression trees in causal inference 

Bayesian additive regression trees (BART) is a non-parametric tree-based regression technique that uses 

Bayesian prior distributions to favour small trees with regularized leaf weights. There are many helpful reviews 

on the method (24,25). BART has several advantages in causal modelling: it can handle a large set of 

confounders with potential interactions among confounders as well as non-linear relationships between 

confounders and outcome, and it’s a simpler approach that requires less model specification in model fitting .   

7.2 Model description and computational details 

For this study, we used BART for probit regression.(27,28) We used Dirichlet prior distributions to encourage 

parsimonious trees (29). The model drew 800 posterior samples of 200 trees each, used a burn-in of 250 

samples, and thinned to keep 1 of every 50 samples in order to achieve good convergence diagnostics.(27) The 

primary outcome model focused on time to death in hospital, and assumed that if patients were discharged 

from hospital then they survived until the end of the 28-day observation period. The prior distributions we 

used included a beta of 2 and alpha of 0.95, which are recognized “default” values for these parameters.  
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7.3 Covariates 

Covariates for the conditional outcome model fell into two categories: baseline and time-varying. The baseline 

covariates included demographics (age, sex, race/ethnicity where available), admission data (time of 

admission, length of stay prior to ICU admission, location prior to ICU admission, specific ICU of admission, 

primary service prior to ICU admission), and most recent clinical data prior to achieving target trial eligibility 

(vital signs, basic procedures, laboratory values). For the MIMIC cohort we also included comorbidities from 

the ICD coding at discharge (diabetes, sleep apnea, COPD, congestive heart failure).  

Time-varying covariates were features constructed from the observed sequence of confounders. We used the 

basis functions from the confounder model fit as the time-varying covariates, or “time series features.” We 

used these basis functions because together with the Gaussian process hyperparameters one could 

reconstruct the entire observed confounder sequence, up to independent identically distributed 

measurement noise. This made the basis functions an excellent choice to summarise irregularly sampled time 

series of irregular lengths into a finite set of features that did not depend on the sampling frequency of the 

data. We used the basis functions from a single randomly selected iteration of the confounder model. We did 

test model performance with other randomly selected iterations (similar performance) and with an ensemble 

approach (modest improvement in AUROC of less than 0.01 and in AU-PRC of less than 0.01 on ensemble 

models of 5, 10, 20 iterations, modest improvement in reliability curve). However, the added computational 

burden was not worth the minimal improvements in model performance.  

7.4 Model outputs and diagnostics 

The models were fit using 80 cores on the Compute Canada cluster and took on the order of 1-5 minutes each. 

Inspection of the Geweke statistics, trace plots, and autocorrelation for keeping every iteration or every 10th 

iteration showed slightly too much autocorrelation and slightly too many of the patients with Geweke statistic 
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values beyond the 95th percentile.(27,30) For that reason we kept every 50th iteration. The corresponding 

Geweke plots, trace plots, and autocorrelations are good and available on request. 

7.5 Five-fold cross-validation 

We used five-fold cross-validation to measure the discrimination, positive predictive value, specificity, and 

calibration of the BART model. The results showed good performance for the MIMIC model and less 

impressive performance for the AmsterdamUMCdb model. The performance was slightly worse than other 

published models fit using similar durations of observed ICU time series data (31), perhaps because no 

features incorporated measurement frequency. We did not include features incorporating frequency because 

we used a standardized observation schedule for the Monte Carlo integration and measurement frequency is 

not a direct consequence of a patient’s physiology.  

We compared the model for each cohort with time-varying features to the model for each cohort without 

time-varying features to show the contribution to model performance attributable to the additional 

information. Models for both cohorts improved after addition of time-varying features. However, the model 

for the AmsterdamUMCdb cohort improved less.  



29 
 
7.5.1 Figure e5: Calibration of conditional outcome model 
MIMIC 

 

AmsterdamUMCdb 
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7.5.2 Figure e6: Discrimination and precision of conditional outcome model – MIMIC-IV 

 

Caption: This figure shows the discrimination (left plot) and precision-recall (positive predictive value versus specificity) for the 
MIMIC cohort. The blue line denotes the model including time-varying features, while the red line denotes a model which uses only 
information available at baseline. The discrimination area under the curve for time-varying was 0.789 compared to 0.734 for 
baseline, while the precisions were 0.45 for time-varying and 0.372 for baseline. 

7.5.3 Figure e7: Discrimination and precision of conditional outcome model – AmsterdamUMCdb 

 

Caption: This figure shows the discrimination and precision-recall for the AmsterdamUMCdb cohort as above. The discrimination 
area under the curve for time-varying is 0.729 compared to 0.687 for baseline, while the precisions are 0.317 for time-varying and 
0.262 for baseline.  
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8 Monte Carlo integration 

The Monte Carlo integration was conducted in a Bayesian fashion as follows: 

1) Select a patient 

2) Use the confounder model to generate trajectories of time-varying confounders, using that patient’s 
baseline and time-varying variables that were available up to and including the time of eligibility. 

3) Apply each threshold to each simulated confounder trajectory 

4) Use the conditional outcome model and the simulated confounder trajectory (after applying treatment 
threshold) to predict the probability of mortality and subsequent invasive ventilation 

5) Average over multiple trajectories for the same hyperparameters to obtain one sample of the posterior 
mean outcomes for that patient 

6) Average over all patients to obtain one sample of the posterior mean outcomes for the population 

7) Repeat for as many iterations as desired. 

8.1 Modeled usual care 

To include usual care in our G-computation, we used the binary variable of invasive ventilation from the 

Gaussian process to model usual care. This variable was the time-varying probability of invasive ventilation 

according to the observed data (“usual care”). In the usual care threshold, at every measurement, the invasive 

ventilation variable takes value 0 (no invasive ventilation) or 1 (invasive ventilation). In this way, we could 

apply usual care to the exact same clinical trajectories on which we tested all of the other thresholds.  

8.2 Treatment thresholds and death before invasive ventilation during the target trial period 

In the data from both cohorts, some patients died before receiving invasive ventilation. These patients may 

have been examples of a “failure to rescue” or patients who received palliative care and were either not 

offered or declined for invasive ventilation. The event of “death before invasive ventilation” was modeled by 

the Gaussian process. However, No reasonable threshold would allow a patient to die before it was met. 

Therefore, when the simulated confounder trajectories predicted “death before invasive ventilation” at a 

given time point, we instead noted the patient as invasively ventilated at that point. 
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8.3 Simulated trajectories 

Below we plot an example simulated confounder trajectory. The confounder model validation plots are also 

helpful here, because any observed trajectory that can be traced out by the confounder model can also be 

generated by the confounder model through simulation (it may not be a likely trajectory, but it is possible). 

The most common discrepancy between simulated trajectories and clinical practice in critical care medicine 

are the timing of the binary events of ICU discharge or death before invasive ventilation. Both of these events 

are influenced by non-physiologic variables such as goals of care preferences and ICU / ward bed availability, 

so it is unsurprising that this was where the simulated trajectories show least realism.  
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8.4 Figure e8: example simulated trajectory 
MIMIC 
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9 Additional results 
9.1 Relative risks and e-values 

In the primary analysis, compared to threshold SF of less than 88, the relative risk of mortality was 0.94 (CrI 

0.90 to 0.98) with threshold SF less than 98, and 0.86 (0.78 to 0.95) with threshold SF less than 110; the 

respective e-values for mortality were 1.34 (CrI 1.19 to 1.46) for SF less than 98 and 1.60 (CrI 1.30 to 1.87) for 

SF less than 110, meaning that unmeasured confounding would require an association between use of the 

specific threshold and mortality of at least that strength in order to negate the findings. 

In the secondary analysis, compared to a threshold SF less than 88, the relative risk of mortality was 1.04 (CrI 

1.00 to 1.10) for a threshold SF less than 98, and 1.16 (CrI 1.07 to 1.29) for threshold SF less than 110; the 

respective e-values were 1.24 (CrI 1.05 to 1.42) for SF less than 98 and 1.58 (CrI 1.34 to 1.89) for SF less than 

110. 
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10 Additional tables and figures 
10.1 Table e5: Comparison of MIMIC-IV and AmsterdamUMCdb cohorts and analyses 
 

Characteristic MIMIC-IV AmsterdamUMCdb 
Available data   
Care limitations Care limitations recorded for < 5% of patients Care limitations recorded for 30% of patients, noted as 1 

(full code; 57%), 2 (some restrictions such as no dialysis, no 
CPR, no ventilation; 34%), 3 (no escalation / terminal; 9%) 

Comorbidities Available from discharge summaries  No data 
Sociodemographic variables Sex, age, race/ethnicity, marital status, language ability Sex and age 
Work of breathing Present Absent 
Oxygen devices High-flow nasal cannula, non-rebreather, and non-

invasive ventilation, facemask, nasal prongs 
Same except no high-flow nasal cannula used clinically 
during the database time period 

   
Clinical practice   
ICU beds / total hospital beds 77/673 (11%) 34/1002 (3.4%) 
Patients with respiratory failure Can be admitted to ICU even without immediate plan 

for invasive ventilation 
ICU admission often precipitated by the decision for invasive 
ventilation 

   
Modeling   
Confounder model Weakest performance for predicting binary events (ICU 

discharge, invasive ventilation, death), and blood gas 
parameters (pH, pCO2) 

Weakest performance for predicting binary events (ICU 
discharge, invasive ventilation, death). GCS and respiratory 
rate also have higher error than in the MIMIC-IV confounder 
model 

Conditional outcome model  Discrimination AUROC 0.79, precision AUPRC 0.45 Discrimination AUROC 0.73, precision AUPRC 0.32 
Causal inference assumption 
violations 

Positivity (some patients probably have goals of care 
precluding invasive ventilation), unmeasured 
confounding 

Positivity perhaps less of an issue than for MIMIC-IV (filtered 
out patients with document goals of care status 3), but 
unmeasured confounding more of a problem relative to 
MIMIC-IV due to fewer included confounding variables 
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10.2 Figure e9: Target trial eligibility flow diagrams 
 

  

 

Figure 1 caption:  This figure shows the number of patients excluded at each stage of applying the target trial emulation inclusion and exclusion criteria
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