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SUPPLEMENTARY METHODS 

 

Study design and patient selection 

The sampling procedure was based on a case-control incidence density, or incidence based sampling. 

In this procedure the selection of controls is governed by the diagnoses of cases. Each calendar time, 

T (e.g. 15
th

 January 1999) that a case is diagnosed, one or more controls are randomly selected from 

the other members of the cohort who, at the time T, are still at risk of developing the outcome 

(distant metastasis). The controls are therefore matched to the case by time of event. A patient who is 

a control at one time can later become a case and/or a control again.  

 For each metastatic population (“visceral only”, “bone & visceral”, “bone only”) 400 cases 

were sampled, and three possible controls were matched to each case by calender time of event. This 

procedure defined 400 case-control sets for each of the three metastatic populations, giving a total of 

1,200 case-control sets. A random sample of case-control sets was taken forward to tissue assessment 

for RNA extraction: the case tissue block was reviewed, and control tissue blocks were reviewed in 

turn until a control tissue block was identified for RNA extraction. Extracted RNA was available for 

a total of 742 case-control (1:1) pairs, comprising a total of 1,277 individual patients. Extensive 

clinico-pathological features, site and date of diagnosis of metastastic spread, as well as breast-

cancer specific death data was available. 

 

 

Cell lines 

FFPE samples from six breast cancer cell lines (MDAMB231, HCC1954, HCC1143, T47D, MCF7, 

BT474) were sent for RNA extraction to Gen-Probe Life Sciences Ltd (UK) and assayed in technical 

duplicate. Cell line samples from a given duplicate pair were assayed on different hybridisation 

plates and preprocessed as part of data set GWDb as part of the quality control assessment procedure.  
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Tissue preparation 

FFPE tumour blocks from the study cohort were obtained from the archive and an HE stained section 

was prepared for pathological review. Tissue samples underwent a standardised selection and 

microdissection protocol. 

 

Microtomy 

All surfaces, including microtome, surrounding bench, forceps, glass trough and brushes, were 

thoroughly cleaned with a paraffin cleaner (J.T. Baker Paraffin Cleaner cat. no. 3451) and then 

RNase Zap (Ambion cat. no. AM9780) to ensure sections will be cut in an RNase-free environment. 

The cleaned glass trough was placed in a water bath half-filled with deionised water and pre-heated 

to 40
0
C. The trough was then filled with warm DEPC-treated water to create a bath within a bath in 

which the sections could be floated, this reducing the amount of DEPC water used. The DEPC-

treated water was changed every two cases or more often if necessary. All other surfaces and 

instruments were thoroughly cleaned as described above between each case and a fresh blade, also 

cleaned with RNase Zap, used to cut each case. Depending on the surface area of the invasive 

carcinoma and cellularity, either four (invasive tumour >200mm
2
 with >50% cellularity), six 

(invasive tumour between 200mm
2
 with <50% cellularity and 100mm2 with >50% cellularity) or 

eight (invasive tumour >100mm
2
 with <50% cellularity ) sections with a thickness of 8mm were cut 

from each case and collected on sterilised slides. Sections were then either baked for 2 hours at 60
0
C 

or stored at 4
0
C overnight and then baked the following day prior to de-waxing. Sections were stored 

for no more than 24 hours before micro-dissection. 

 

De-waxing and staining 

All containers and instruments were sterilised prior to use by exposing to UV light for a minimum of 

20 min before beginning the de-waxing process. Slides were immersed in Coplin jars of xylene (2 x 

5min), 100% Ethanol (2 x 5mins), 70% Ethanol (1 x 5min) and DEPC-treated water (1 x 5min) to 

de-wax. Sections were then further washed in DEPC-treated water (2 x 2min) and stained with 1% 

Nuclear Fast Red (2min), so that nuclei were visible under a light microscope, followed by two 

further 2 min washes of DEPC-treated water. All solutions, except 1% Nuclear Fast Red, were 

changed every two cases or more often if necessary. After staining, slides were then gently tapped on 

a fresh piece of paper tissue in order to remove excess water, taking care not to over-dry the sections. 
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Micro-dissection 

Prior to micro-dissection, all surfaces, including microscope, surrounding bench, forceps and 

containers were thoroughly cleaned as described previously. For each sample a barcode labelled 

cryovial pre-filled with 240ml of PKD buffer was prepared. Individual NFR-stained sections were 

microscopically examined and, using the marked H&E as a guide, the areas of invasive tissue micro-

dissected. This was achieved by using the tip of a 19G sterile needle to carefully lift the tissue into 

the PKD buffer containing cryovial. Once all sections from the case had been micro-dissected, the 

cryovial was vortexed (15 sec) to ensure adequate mixing. The cryovial was then immediately snap-

frozen on dry ice and transferred to -80
0
C storage until shipping. 

 

Preparation of Materials 

DEPC-Treated Water: 500ml Duran bottles were filled with deionised water and 500ml of Diethyl 

Pyrocarbonate (DEPC) solution (SIGMA D5758-100ml) was added to each bottle in a fume hood 

and mixed well by inverting several times. Bottles were then left in the fume hood overnight to allow 

excess fumes to evaporate, before being put through two autoclave sterilization cycles. Once cooled 

the DEPC-treated water was ready for use. 

Sterilised Glass Slides: Uncharged slides were put through two 5 minutes washes, first in 100% 

Ethanol and then in DEPC-treated water, before being placed into a slide box pre-cleaned with 

RNase Zap (Ambion cat. no. AM9780). Slides were then exposed to UV light for a minimum of 20 

minutes after which the box was sealed with autoclave tape ready for use. 

1% Nuclear Fast Red Solution: A 1% Nuclear Fast Red solution was made up by adding 50g of 

Aluminium Sulphate powder (Fisher cat. no. A/2600/53) to a beaker containing 1L of DEPC-treated 

water and allowing it to dissolve on a stirring hot plate heated to 100
0
C. Once fully dissolved, 1g of 

NFR powder (Sigma cat. no. 60700) was added to the solution and also allowed to dissolve. The 

solution was left to cool down before being filtered using two 500ml Vacuum Filtration (TPP 99500) 

and then stored in at 4
0
C ready for use. 

Barcoded Cryovials: 2ml cryovials were labelled using barcodes provided by Gen-Probe Life 

Sciences Ltd, the company performing the total RNA extraction, and pre-filled with 240ml of PKD 

buffer (Qiagen RNeasy FFPE kit cat. no. 73504). 
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Tissue selection  

All FFPE tumour blocks from the study cohort were selected from the archive and an HE stained 

section prepared for pathological review. Only sections demonstrating invasive carcinoma of more 

than 20mm
2
 (either a single area or multiple areas) were retained. Areas of invasive carcinoma were 

outlined on the coverslip during microscopical examination. Care was taken to avoid non-invasive 

malignant cells, lymphocytes and normal cells. The number of 8mm sections to be cut from each case 

for RNA extraction was based on the total area and cellularity of invasive cells marked on the 

section. Overloading the RNA extraction kit column with too much starting material has been shown 

to have a detrimental effect on RNA yield (1) so an algorithm based on a previous study (2) was used 

to validate the extraction kit. 

 

 

RNA extraction and quality assessment 

Samples were sent in batches to Gen-Probe Life Sciences Ltd to carry out RNA extraction using the 

Qiagen RNeasy FFPE kit (cat. no. 73504). RNA samples were returned with accompanying data on 

quality and quantity. RNA was quantified using a NanoDrop spectrophotometer reporting 

A260/A280 and A260/A230 ratios, concentration and yield, and RiboGreen (Invitrogen) reporting 

concentration and yield. RNA was assessed using Ct values (qRT-PCR of RPL13a) and RIN values 

(Agilent 2100 Bioanalyser). A normalised sample (20uL of 50ng/uL) was prepared from each RNA 

sample in preparation for subsequent WG-DASL assay. RNA samples were taken forward for WG-

DASL expression profiling based on Ct value. Samples with Ct < 29 were prioritised for WG-DASL 

(2-4) and a number of samples with Ct > 29 were included from each extraction batch. RNA sample 

selection was performed for each extraction batch based on Ct value and without reference to any 

other factors. 

 

 

DASL labelling and microarray hybridisation 

Total RNA was converted to cDNA using Illumina Whole-Genome DASL and hybridised onto 

Illumina HT-12 v4 BeadChips according to manufacturer’s instructions. WG-DASL hybridisation 

plates 1-7 were assayed using DASL reagent MCS3, and WG-DASL hybridisation plates 8-15 using 

MCS4+RTE. Microarrays were scanned using the Illumina iScan system. Samples were mixed 

across BeadChips and array positions (A-L) to avoid confounding by date of diagnosis, ER status, 

tumour grade, and metastatic group (5, 6). 
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Microarray data processing 

Raw intensity data (idat files) were imported into Illumina GenomeStudio (version 2011.1, GE 

v1.9.0) with no background correction (7). Probes with missing data were excluded within each 

hybridisation plate (96 arrays) to avoid introducing imputation effects. Bead summary data were 

exported from GenomeStudio with no further processing and imported into R/Bioconductor using the 

‘beadarray’ package (8). The subset of probe IDs common to each hybridisation plate were 

combined to form two data sets corresponding to the two different DASL reagents: arrays from 

hybridisation plates 1-7 (29,632 probe IDs) and plates 8-15 (27,165 probe IDs). Probe annotations 

were assigned using the R/Bioconductor package ‘illuminaHumanWGDASLv4.db’ (v1.18.0) (9). 

Ensembl Gene ID coverage was 19,167 unique Ensembl Gene IDs for hybridisation plates 1-7 and 

18,148 for plates 8-15. The majority of arrays from hybridisation plates 6-7 were removed from 

further analysis (due to issues with the platform reagent) and a subset of samples assayed on 

hybridisation plates 4-7 were repeated on plates 8-15. Outlier arrays were excluded from further 

analysis following the inspection of raw intensity distributions. Arrays in GWDa (plates 1-7) were 

excluded if mean(log2 intensity) < 8.5 or standard deviation < 1.5. Arrays in GWDb (plates 8-15) 

were excluded if median(log2 intensity) < 8. The remaining arrays were quantile normalised within 

GWDa and GWDb. Samples present in both GWDa and GWDb were removed from GWDa where it 

was used as a validation set for gene expression scores. Putative probe-level batch effects (6) which 

may be related to BeadChip, hybridisation or extraction batches were inspected. Principal component 

analysis indicated significant associations between dominant components and ER status, tumour 

grade and metastatic group. In addition, there were significant components associated with RNA 

extraction batch and chip position. After applying a gene-specific linear adjustment (ComBat (10, 

11)), the associations with ER and grade were weakened while technical factors were still associated 

with several principle components of the adjusted data. Therefore, in this study we worked with 

quantile normalised data with no further manipulation for technical correlates at the preprocessing 

stage. Probes with the largest technical batch effects were identified for reference. 

 

 

Assessment of quantity and quality of RNA extracted from long-term stored FFPE material 

Extracted RNA was inspected before proceeding to WG-DASL. RNA extracted from FFPE material 

show varying degrees of degradation (2-4). We investigated whether factors related to sample 

storage, the age of the tissue block and the type of fixative used, affected the quantity and quality of 

extracted RNA. The RNA samples in this study were from patients diagnosed between 1975 and 



 

6 

 

2005, and tissue samples were dissected fresh then fixed using one of three formalin-based fixatives 

(formol saline, formol calcium, phenol formol saline) according to the protocol in place at the date of 

primary diagnosis and subsequent tissue storage (Supplementary Figure 6A). RNA samples from 

lymph node metastases spanned the same period of diagnosis times (Supplementary Figure 6B). 

Increased RNA yield and purity as measured by A260/A280 ratio (optimal value » 2) from primary 

tumour samples was associated with shorter storage time (Supplementary Figure 6). RNA yield and 

purity from lymph node samples was not as sensitive to storage time as the primary tumour samples. 

Lymph node metastases produced similar RNA yields and purity across all time periods of diagnosis 

and higher yields than primary tumour samples (lymph node, median: 13.4mg; primary tumour, 

median: 9.1mg; p=8x10
-7

, Mann-Whitney U) (Supplementary Figure 6D,F). 

RNA quality measured by Ct value (RPL13a Q-PCR) indicated overall poorer RNA quality 

(higher Ct values) for primary tumour samples with longer storage times (Supplementary Figure 6G). 

A similar loss of RNA quality with storage time was observed for lymph node metastases; however, 

the oldest lymph node samples (1975-1990) were overall of higher quality than primary tumour 

samples of similar age (Supplementary Figure 6H). 

 RNA yield and quality (Ct value) were compared with tumour pathological factors within three 

decade-long periods of diagnosis, due to the expected effect of storage time on RNA quantity and 

quality (Supplementary Figure 6I,J). Tumour invasive grade was associated with RNA yield within 

all three decades of diagnosis (1975-1984: p=2x10
-6

; 1985-1994: p=7x10
-12

; 1995-2005: p=8x10
-9

; 

Kruskal-Wallis) (Supplementary Figure 6I). Estrogen receptor (ER)-negative tumours produced 

slightly higher median RNA yields but this was significant only within the samples of shortest 

storage time (1975-1984: p=0.1; 1985-1994: p=0.04; 1995-2005: p=0.005; Mann-Whitney U) 

(Supplementary Figure 6I). Similarly, triple negative breast tumours (TNBC; IHC ER-, PgR- and 

HER2-negative) produced higher median yields than hormone receptor-positive tumours (at least one 

of IHC ER, PgR or HER2 known and positive) with a significant difference within the most recent 

decade (1975-1984: p=0.6; 1985-1994: p=0.3; 1995-2005: p=0.002; Mann-Whitney U) 

(Supplementary Figure 6I). There was no evidence of corresponding higher RNA quality (lower Ct 

values) in TNBCs (Supplementary Figure 6J). 

 



 

7 

 

Design and preparation of WG-DASL gene expression data sets 

RNA samples were selected for WG-DASL assays based on Ct value, as previous studies report that 

Ct value may be a useful indicator for proceeding to WG-DASL (3, 4). RNA samples with Ct < 29 

were prioritised for WG-DASL and a number of samples with Ct > 29 were included to test their 

feasibility (Supplementary Figure 6).  

In total, 874/1,370 primary tumour RNA samples and 79/100 lymph node metastasis RNA samples 

were taken forward to WG-DASL assay. Sample characteristics including metastatic group, ER 

status and grade were distributed across BeadChips and randomised with respect to array position 

(A-L) (6). To assess the technical variability of the WG-DASL assay, technical duplicates of ten 

samples were included on each hybridisation plate (96-well plate), and across different hybridisation 

plates.  

Hybridisation plates 1-7 and 8-15 were analysed as separate data sets due to a change in WG-

DASL kit reagent (see Methods; Fig 1). Overall, WG-DASL success rate and data quality was 

improved for hybridisation plates 8-15 compared to plates 1-7. Samples on plates 8-15 were 

therefore used to construct the primary training set (Guy’s WG-DASL, “GWDb”) while samples on 

plates 1-7 were used as the validation set (“GWDa”).  

The primary tumour and lymph node metastasis samples taken forward to hybridisation were 

found to represent the full range of storage times. Ct distributions varied with storage time 

(Supplementary Figure 6C-D) and higher Ct values corresponded to a modest overall decrease in 

array intensities (Supplementary Figure 6G). Inspection of Ct value and density of RNA fragment 

lengths suggests that array failure/lower quality has a modest association with increased Ct value and 

reduced density of fragments around 200nt (as determined by Agilent Bioanalyser 2100 Expert 

software); however, neither of these RNA diagnostics were discriminatory for array failure/lower 

quality in this data set (Supplementary Figure 6H). 

 

 

Assessment of reproducibility across technical replicates 

The reproducibility of sample profiles was established by inspecting (i) the correlation of profiles 

from technical duplicates, (ii) the consistency of molecular subtype assignments (based on the 

PAM50 classifier (12)), and (iii) the expression profiles derived from cell line samples. The 

reproducibility of technical duplicates (two WG-DASL assays for a single extracted RNA sample) 

was investigated by calculating pairwise Pearson correlation coefficients for all samples. The mean 

(range) of correlation for technical duplicates was 0.98 (0.88-0.9959), compared with pairwise 



 

8 

 

correlations between all other samples, median 0.91 (0.44-0.98), demonstrating high specificity of 

similarity between technical duplicates (Supplementary Figure 6E; p<10
-16

, Mann-Whitney U). 

Within the range of technical duplicate correlations, higher correlation was associated with lower Ct 

values and higher RNA yield, but did not show an association with the density of fragments with 

length 150-200nt (Supplementary Figure 6E). Gene expression profiles of duplicated RNA assays 

from the same patients were assigned to molecular breast cancer subtypes using the PAM50 centroid 

classification (12), with 72 out of the 82 cases in GWDb (88%) and 21/21 (100%) in GWDa 

classified to the same molecular subtypes. 

To further explore the quality of the GWDb data set, cell line expression profiles were assessed 

for whether consistent profiles could be recovered from the same cell line samples distributed across 

different hybridisation plates. FFPE samples from six breast cancer cell lines were assayed in 

technical duplicate, and cell line samples within a given duplicated pair were assayed on different 

hybridisation plates and preprocessed within data set GWDb. An unsupervised clustering of highly 

variable probes from the resulting expression profiles showed that all technical duplicates clustered 

together (with the exception of HCC11954 which array failed the initial quality assessment) and 

separated the basal-like from the luminal-like cell lines (13, 14). 

 

 

Overlaps with other gene expression data sets 

A number of patients in this study overlap with other studies, as follows: 

Study(s) Reference(s) Total patient 

overlap 

(extracted RNA) 

Total patient 

overlap (GWDb) 

 

METABRIC 

 

 

Curtis et al. 2012 [ref (15)] 

 

63 

 

40 

 

Breakthrough 

studies 

 

Braso-Maristani et al. 2016 [ref (16)] 

 

 

34 

 

15 

  

 

ER status for stratified analyses 

We aimed to avoid potential contamination of WG-DASL derived ER-positive or ER-negative data 

sets where individual samples appear to have a discrepancy between IHC ER status and ESR1 

expression. To avoid a potential confounding factor related to discrepancy between IHC ER status 
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(clinico-pathological information) and ESR1 expression levels (WG-DASL), samples were 

considered “ER-positive” if both IHC status and ESR1 gene expression level (ESR1 > 10.3) indicate 

ER-positivity. Samples with a discordant IHC and ESR1 gene expression level were excluded from 

ER stratification. The threshold for ESR1 was identified on inspection of bimodal density plots of 

ESR1 expression level across samples, and then tested to verify that the number of discordant 

samples was close to the minimum possible when compared with other thresholds. This definition 

also reduces the possibility that IHC ER-positive samples show an inflation in the number of samples 

with “visceral only” metastases, and the ER-negative group an inflation in “bone only” metastases, 

if samples are identified as ER-positive or ER-negative on the basis of IHC status alone. 

 

 

Gene module scoring 

Scores were assigned using DART (17) and further compared with weighted sum (weights (+1,-1) 

according to the direction of expression in the gene signature) except for SRC response which was 

modelled as a binary variable. Previously reported gene expression signatures were mapped to WG-

DASL probes using Ensembl Gene ID, Entrez Gene ID or gene symbol, according to their original 

source (Table S2). Where multiple microarray probes mapped to a single Entrez Gene ID, the probe 

with the most variable gene expression across the datasets was used (based on standard deviation in 

the relevant data set). SRC response was modelled as a binary variable: primary tumour samples with 

an active SRC response (SRC+) were defined as samples within the upper tertile of SRC gene 

expression in GWDb (patient de-duplicated). 
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Sweave: conditional logistic regression and logistic regression models of computed gene module scores

## Based on script do_CCseries_sigPanelOR_fromcCTable.R, git commit bed7f895

# Read the case-control expanded table (by RS;c/c) with appended columns of

# covariables (matched by Patient.ID) sigScores as cts variables: Perform

# (univar) conditional OR tests with RS_id’s as strata (allow one intersept

# per RS_id)

library(Epi) # for clogistic, conditional logistic regression

# Utility function x is a numeric vector, vector of sig scores Return a

# vector of the same length, where (5th,95th) quantiles are set to approx

# (-1,1)

shrink <- function(x, upper = 0.95, lower = 0.05) {
x <- x - median(x, na.rm = TRUE)

x <- 2 * x/(quantile(x, upper, na.rm = TRUE) - quantile(x, lower, na.rm = TRUE))

return(x)

}

## Read the case-control expanded table (by RS;c/c) with appended columns of

## covars/annotation

mdat <- read.delim(file = "../output/master_mdat_byRS_hasExtractedCase_byResIDintentions__expandRScC_annot.txt",

sep = "\t", header = TRUE)

## OR tests for each sig score, in GWDb GWDb_sigs: cts with RS_id strata,

## conditional logistic regression using Epi::clogistic

sigNames <- c(grep("ˆGWDb__sigScore2DART_", colnames(mdat), value = TRUE), "GWDb__SRCpos")

## Example: sigName <- sigNames[1] clogistic(

## factor(mdat$Case_Control,levels=c(’Control’,’Case’)) ˜ mdat[,sigName],

## strata=as.factor(mdat$Random_Selection) ) clogistic(formula, strata, data,

## subset, na.action, init, model = TRUE, x = FALSE, y = TRUE )

do_CondLogReg_bySig <- function(dat, sigName, caseType = "", ERtype = "") {
# caseType: V,BV,B,[anything else doesn’t subset]; ERtype:

# ERpos,ERneg,[anything else doesn’t subset]

# Filter RS’s by caseTypes

keepRS <- unique(dat$Random_Selection) # Init, Vector of RS values to be included

if (caseType %in% "B") {
keepRS <- unique(dat$Random_Selection[dat$CaseType %in% "Bone Only"])

}
if (caseType %in% "V") {

keepRS <- unique(dat$Random_Selection[dat$CaseType %in% "Visceral Only"])

}
if (caseType %in% "BV") {

keepRS <- unique(dat$Random_Selection[dat$CaseType %in% "Bone+Visceral"])

}
dat <- dat[(dat$Random_Selection %in% keepRS), ]

rm(keepRS)

## Filter RS’s by ER status of case AND control

if (ERtype %in% "ERpos") {
# Keep only the entries which are of this ERtype

dat <- dat[(dat$GWDb__ER_ESR1_IHC %in% 1), ] # Note: excludes any samples in plates1to7 only (NA)

# Keep only paired RS’s. The remaining entries are RS-pairs of this ERtype.

dat <- dat[dat$Random_Selection %in% dat$Random_Selection[duplicated(dat$Random_Selection)],

]

}

if (ERtype %in% "ERneg") {
# Keep only the entries which are of this ERtype

dat <- dat[(dat$GWDb__ER_ESR1_IHC %in% 0), ] # Note: excludes any samples in plates1to7 only (NA)

# Keep only paired RS’s. The remaining entries are RS-pairs of this ERtype.

dat <- dat[dat$Random_Selection %in% dat$Random_Selection[duplicated(dat$Random_Selection)],

]

}

# Store which RS’s are remaining in dat (used for the tests)

RSused <- unique(dat$Random_Selection)

# Cts, after rescaling to a standard scaling (within each sig) and to reduce

# the effect of outliers (cf. Ben Haibe-Kains, JCO, 2012) This way, within a

1



# dat.expand (case/control selection), cts sig OR’s are comparable (OR’s for

# a unit increase in a scaled module score)

dat[, sigName] <- shrink(dat[, sigName])

mylogit.cts.cond <- clogistic(factor(dat$Case_Control, levels = c("Control",

"Case")) ˜ dat[, sigName], strata = as.factor(dat$Random_Selection))

dat.cond <- dat # Keep

dat.wilcox <- dat[dat$Case_Control %in% "Case", c("Random_Selection", sigName)]

dat.controls <- dat[dat$Case_Control %in% "Control", ]

dat.wilcox <- cbind(dat.wilcox, dat.controls[match(dat.wilcox$Random_Selection,

dat.controls$Random_Selection), sigName])

colnames(dat.wilcox)[2:3] <- paste(c("Case", "Control"), sigName, sep = ".")

rm(dat.controls)

res.wilcox <- wilcox.test(dat.wilcox[, paste("Case", sigName, sep = ".")],

dat.wilcox[, paste("Control", sigName, sep = ".")], paired = FALSE)

res.wilcox.paired <- wilcox.test(dat.wilcox[, paste("Case", sigName, sep = ".")],

dat.wilcox[, paste("Control", sigName, sep = ".")], paired = TRUE)

cts.summary.Cases <- summary(dat.wilcox[, paste("Case", sigName, sep = ".")])

cts.summary.Controls <- summary(dat.wilcox[, paste("Control", sigName, sep = ".")])

# For unconditional (unpaired), remove duplicate patients from the controls

dat <- dat[!duplicated(paste(dat$Case_Control, dat$Patient.ID)), ]

mylogit.cts <- glm(factor(dat$Case_Control, levels = c("Control", "Case")) ˜

dat[, sigName], family = "binomial")

dat.uncond <- dat[, c("Random_Selection", "Case_Control", "GWDb__PAM50.Nearest.centroid",

"Patient.ID")] # Keep

return(list(mylogit.cts = mylogit.cts, mylogit.cts.cond = mylogit.cts.cond,

RS.cond = RSused, res.wilcox = res.wilcox, res.wilcox.paired = res.wilcox.paired,

cts.summary.Cases = cts.summary.Cases, cts.summary.Controls = cts.summary.Controls,

dat.cond = dat.cond, dat.uncond = dat.uncond, dat.wilcox = dat.wilcox))

}

################## For each caseType

for (caseType in c("anyCaseType", "V", "BV", "B")) {

## Capture output to file

out.file <- paste("output/sigPanel_condLogRegORs_", caseType, "_byInt.txt",

sep = "")

sink(out.file)

# Init results stores

resListc <- list() # clogistic output object

resListc.summary <- list() # summary(clogistic output)

resListc.OR <- list() # OR, 95% CI

# Init results stores

resListcGGIadj <- list() # clogistic output object

resListcGGIadj.summary <- list() # summary(clogistic output)

resListcGGIadj.OR <- list() # OR, 95% CI

# ERtype <- ’ERany’

for (ERtype in c("ERany", "ERpos", "ERneg")) {
for (sigName in sigNames) {

print("---------------------------------------------------------------")

print(ERtype)

print(caseType)

print(sigName)

if (!((ERtype %in% "ERneg") & (caseType %in% c("V", "B")))) {
res <- do_CondLogReg_bySig(dat = mdat, sigName = sigName, caseType = caseType,

ERtype = ERtype)

print(res$mylogit.cts.cond)

# Assign results

resListc[[ERtype]][[sigName]][["mylogit.cts.cond"]] <- (res$mylogit.cts.cond)

resListc.summary[[ERtype]][[sigName]][["mylogit.cts.cond"]] <- summary(res$mylogit.cts.cond)

resListc.OR[[ERtype]][[sigName]][["mylogit.cts.cond"]] <- exp(cbind(OR = coef(res$mylogit.cts.cond),

confint(res$mylogit.cts.cond)))

resListc[[ERtype]][[sigName]][["mylogit.cts"]] <- (res$mylogit.cts)

resListc.summary[[ERtype]][[sigName]][["mylogit.cts"]] <- summary(res$mylogit.cts)

resListc.OR[[ERtype]][[sigName]][["mylogit.cts"]] <- exp(cbind(OR = coef(res$mylogit.cts),

confint(res$mylogit.cts)))
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resListc[[ERtype]][[sigName]][["res.wilcox"]] <- (res$res.wilcox)

resListc[[ERtype]][[sigName]][["res.wilcox.paired"]] <- (res$res.wilcox.paired)

resListc[[ERtype]][[sigName]][["cts.summary.Cases"]] <- (res$cts.summary.Cases)

resListc[[ERtype]][[sigName]][["cts.summary.Controls"]] <- (res$cts.summary.Controls)

resListc[[ERtype]][[sigName]][["RS.cond"]] <- res$RS.cond

resListc[[ERtype]][[sigName]][["mylogit.cts.cond_dat"]] <- (res$dat.cond)

resListc[[ERtype]][[sigName]][["mylogit.cts_dat"]] <- (res$dat.uncond)

resListc[[ERtype]][[sigName]][["wilcox_dat"]] <- (res$dat.wilcox)

rm(res)

}

}
}

sink()

########################## Export

save(list = c("resListc", "resListc.OR", "resListc.summary"), file = paste("output/res_sigPanel_condLogRegORs_",

caseType, "_byInt.rda", sep = ""))

}

sessionInfo()
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