A

B

ventral view

ventral dorsal

Supplementary Figure 1. In vivo imaging of mammary glands with Isovue-300 in 70\% ethanolcontaining solution. A) lodine-based contrast agent-containing solution of $70 \% \mathrm{EtOH}$ was sequentially injected within 15 min in left abdominal (\#4), left thoracic (\#2), and right abdominal gland (\#9); full-body microCT scan was acquired immediately after the last ID injection. B) Sequential 4 min . high-resolution microCT scans were acquired from independent animals whose abdominal glands were injected with iodinebased contrast agent-containing solution of PBS or $70 \% \mathrm{EtOH}$. Different angle views and time points of the same representative glands are shown. Voxels with signal intensities from -500 to 500 Hounsfield units in original CT slices were selected for volume rendition of diffused contrast agent. Scale bars indicate 1 mm in image panels at different magnification.
 transmission electron microscopy (TEM). TEM image show excellent homogeneity in size and morphology of TaO_{x} NCs. TEM images were acquired on a 2200FS JEOL electron microscope. These TaO_{x} NCs were prepared as follows: In a 250 mL , one neck round bottom flask, fitted with a septa, IGEPAL®-CO520 (average $M_{n} 441$, ALDRICH, 23.0 g), Cyclohexane ($\geq 99 \%$, A.C.S. spectrophotometric grade, SIGMAALDRICH, 200 mL) and Ethanol (200 Proof, Anhydrous, KOPTEC USP, 2.5 mL), were added and the contents were stirred to obtain a clear solution. To this stirring mixture, a solution of Sodium Hydroxide (100 $\mathrm{mM}, 2.5 \mathrm{~mL}$) was added and the micro-emulsion was sonicated in a water bath to ensure homogeneity. Next, Tantalum (V) ethoxide, ($\mathrm{Ta}_{2} \mathrm{O}_{5}, 99.98 \%$ trace metal basis, $\mathrm{ALDRICH}, 0.5 \mathrm{~mL}$) was added in one portion and the contents were stirred at ambient temperature for 20 minutes. To the micro-emulsion mixture containing uncoated TaOx NCs, 2-[Methoxy (polyethyleneoxy)-9-12-propyl]trimethoxysilane (PEG-Silane, tech-90, MW 591-723, GELEST INC., 3.0 mL), quickly followed by (3-Aminopropyl)trimethoxysilane (APTMS, 97\%, ALDRICH, $\quad 0.028 \mathrm{~mL}$) were added. The resulting milky white suspension solution was stirred at room temperature for 16 h . After 16 h , the reaction mixture was diluted to three times volume using a $1: 1$ mixture of Ethyl Ether (Anhydrous, Certified ACS, Fisher Scientific, 110 mL) and Hexane (meets ACS specifications, VWR Chemicals, 110 mL) and the NCs were isolated via centrifugation ($15,000 \mathrm{rpm}, 10$ minutes, $10^{\circ} \mathrm{C}$) as white oily residue. This residue was suspended in ethyl ether and washed using a similar centrifugation procedure twice. The supernatants were discarded and the residue pellet so obtained was suspended in 100 mL Ethanol and Methoxy-poly(ethylene-glycol)-succinimidyl glutarate (m-PEG-SG-2000, Average MW 2000, LAYSAN BIO INC., 50 mg) was added to it. The contents so obtained were stirred at room temperature in the dark for 12 h . Then, the solvent was removed on a rotary evaporator to reduce the volume to about 5 mL . This final residual solution was dissolved in water (10 mL) and transferred to Dialysis Membrane bags (SPECTRA/POR® 6 Dialysis Membrane, Standard RC Tubing, MWCO: 1 kD), clipped at both ends and dialyzed against water with regular change of external media after 2, 4, 16, 4, 4 and 16 h . After extensive dialysis, the contents in the dialysis bags were lyophilized to obtain the $\mathrm{TaO}_{\times} \mathrm{NCs}$ as a white fluffy powder. Product Yield: 940 mg . Ta\% = 30\% (calculated from ICP-OES).

		Size (d.nm):	\% Number	Width (d.nm...	
Z-Average (d.nm):	43.05	Peak 1:	9.036	100.0	2.616
Pdl:	0.458	Peak 2:	0.000	0.0	0.000
Intercept:	0.758	Peak 3:	0.000	0.0	0.000

Result quality : Good

Supplementary Figure 3. Characterization of $\mathrm{TaO}_{\mathrm{x}}$ nanocrystals by Dynamic Light Scattering (DLS). DLS plot shows a narrow range of particle size distribution. TaO_{x} were analyzed in hydrophilic conditions by dissolving TaOx nanocrystals at $1 \mathrm{mg} / \mathrm{mL}$ in water. DLS plot was acquired on a Zetasizer instrument (Malvern, USA).

		Tumor in non-injected gland										Tumor in injected gland									
ID	experimental group	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
90	untreated	N	N	N	N	N	Y	N	N	N	N										
101	untreated	Y	Y	N	N	N	Y	N	Y	Y	Y										
106	untreated	Y	Y	N	N	N	N	N	Y	N	Y										
108	untreated	Y	Y	N	Y	Y	Y	N	N	N	N										
109	untreated	Y	N	Y	N	N	N	N	N	N	N										
112	untreated	Y	N	N	N	N	Y	N	Y	N	N										
115	untreated	N	Y	N	Y	N	N	N	N	N	Y										
121	untreated	N	Y	Y	N	N	Y	N	N	Y	N										
124	untreated	Y	Y	Y	N	N	Y	N	N	N	N										
137	untreated	Y	N	Y	N	N	N	Y	Y	Y	N										
155	untreated	Y	N	N	Y	N	Y	N	N	N	N										
156	untreated	Y	Y	N	N	N	Y	N	N	N	N										
158	untreated	N	Y	N	Y	Y	Y	N	N	Y	Y										
161	untreated	N	N	N	N	N	Y	N	N	N	N										
167	untreated	N	N	Y	Y	Y	Y	N	N	N	N										
170	untreated	N	N	N	Y	Y	N	N	N	N	Y										
175	untreated	Y	N	N	N	N	Y	Y	N	N	N										
192	untreated	Y	N	N	N	N	Y	N	Y	Y	N										
196	untreated	N	N	Y	N	N	N	N	N	Y	N										
202	untreated	Y	N	N	Y	N	Y	N	Y	Y	N										
203	untreated	Y	N	N	N	N	Y	N	N	N	Y										
208	untreated	N	N	N	N	N	N	Y	Y	N	N										
213	untreated	N	Y	Y	N	N	Y	N	N	N	Y										
218	untreated	Y	N	N	Y	N	Y	N	N	N	Y										
219	untreated	N	N	N	N	N	Y	N	N	N	N										
311	carprofen only	N	Y	N	N	Y	N	Y	N	N	Y										
312	carprofen only	Y	N	N	N	N	N	Y	N	N	N										
314	carprofen only	N	N	N	N	N	N	Y	Y	N	N										
315	carprofen only	Y	N	N	N	N	Y	N	N	Y	Y										
318	carprofen only	N	N	N	Y	N	Y	N	N	N	N										
319	carprofen only	Y	N	N	N	N	Y	N	N	N	Y										
322	carprofen only	Y	N	N	N	N	Y	N	N	N	Y										
323	carprofen only	Y	Y	N	N	N	N	Y	N	Y	N										
325	carprofen only	Y	N	N	N	N	Y	N	N	N	N										
327	carprofen only	Y	N	N	N	N	N	Y	N	N	N										

207	PBS	Y					Y			Y			Y	N	Y	N		Y	N		N
209	PBS					N	N				N	Y	Y	N	N			N	N	N	
215	PBS		Y		Y	N					N	Y			N		Y	Y	N	N	
216	PBS	Y					Y				N		Y	N	Y	N		Y	Y	N	
220	PBS			Y		Y	N	N			N	Y	Y		Y				N	N	
222	PBS			Y			N		N		N	Y	N		N	N		N		N	
231	PBS	Y		N			N	Y		Y			Y		Y	N			Y		Y
241	PBS	Y		Y			Y	Y		Y			Y		Y	Y			N		Y

242	PBS	Y	Y	Y		Y	Y		Y		Y	Y		Y	N
243	PBS	Y	N		N	Y	N	N	Y	N		N	Y		

280	50% EtOH[Contrast/PBS]	N	Y	Y			N				N				N	N		Y	N	N	
285	50% EtOH[Contrast/PBS]	Y	N	Y	N	Y	N	Y	N											N	N
286	50% EtOH[Contrast/PBS]	Y	N	N			Y			N	N				N	N		N	N		
287	50% EtOH[Contrast/PBS]	Y	N	N		N	N				N				N			N	N	Y	
288	50% EtOH[Contrast/PBS]	Y	N			Y	Y							N	N			Y	N	Y	N
290	50% EtOH[Contrast/PBS]	N	N		N	Y	N	N			N			N					N	N	

297	70\% EtOH[Contrast/PBS]	Y	Y		Y		N				N			N		N	Y	Y	N	
304	70\% EtOH[Contrast/PBS]	N	N	N		N	N		Y		N				N		N		N	
305	70\% EtOH[Contrast/PBS]	Y				Y	N		Y		N		N	N	N		N		N	
308	70\% EtOH[Contrast/PBS]	Y	N	N		N	Y			N	N				N		N	N		
309	70\% EtOH[Contrast/PBS]	N	Y				N		Y	N				N	N	N	N			N
316	70\% EtOH[Contrast/PBS]		Y			N	Y	N			N	N		N	N			N	N	
317	70\% EtOH[Contrast/PBS]	Y			N	Y	Y		Y		Y		N	N			N		N	
324	70\% EtOH[Contrast/PBS]	Y			Y	N	Y				N		N	Y			N	N	N	
338	70\% EtOH[Contrast/PBS]			Y			Y				N	Y	N	N	N		N	N	N	
341	70\% EtOH[Contrast/PBS]	Y					N		Y		N		N	N	N	N	N		N	
342	70\% EtOH[Contrast/PBS]	Y		Y		N	Y		Y		Y		Y		N		N		N	

188	70\% EtOH[H2O]	Y	N	N						N	N				N	N	N	N	N		
190	70\% EtOH[H2O]	Y					N	N	N				N	N	N	N				N	N
193	70\% EtOH[H2O]					N	Y	Y	N			N	N	N	N					N	N
200	70\% EtOH[H2O]	N	Y	N			N	N	N						N	N				N	N
291	70\% EtOH[H2O]		Y									N		N	N	Y	N	N	N	N	N
292	70\% EtOH[H2O]	Y						Y	N	Y			N	N	N	N	N				N
294	70\% EtOH[H2O]			Y								N	N		N	N	N	N	N	N	N
296	70\% EtOH[H2O]							Y				N	N	N	N	N	N		N	N	N
299	70\% EtOH[H2O]		Y									N		N	N	N	Y	N	N	N	N
300	70\% EtOH[H2O]	Y			Y		Y						N	N		Y		N	N	N	N
301	70\% EtOH[H2O]		Y						Y			N		N	N	N	Y	Y		N	N
307	70\% EtOH[H2O]				Y							Y	N	N		N	N	N	N	N	N
310	70\% EtOH[H2O]					Y		Y				N	N	N	N		Y		N	N	N

Supplementary Table 1. Tumor formation in non-injected and injected mammary glands assessed at necropsy. Presence of a tumor at necropsy is indicated with a " Y " for yes and absence with a " N " for no. Fields are left blank for mammary glands that were not part of that experimental group or class. Mammary gland location code: 1 = left cervical; 2 = left upper thoracic; $3=$ left lower thoracic; $4=$ left abdominal; $5=$ left inguinal; $6=$ right cervical; $7=$ right upper thoracic; $8=$ right lower thoracic; $9=$ right abdominal; $10=$ right inguinal.

