SUPPLEMENTAL TABLE 1. EGFR FISH-based copy number assessments
Supplemental Table 1A.

| Classification | Abbreviation | Description ${ }^{1}$ |
| :---: | :---: | :---: |
| disomic | DIS | $\leqslant 2$ copies in > 90\% of cells |
| lo trisomic | LO-TRI | $\leqslant 2$ copies in $\geqslant 40 \%$ of cells AND 3 copies in 10-40\% of cells AND $\geqslant 4$ copies in < 10\% of cells |
| hi trisomic | HI-TRI | $\leqslant 2$ copies in $\geqslant 40 \%$ of cells AND 3 copies in $\geqslant 40 \%$ of cells AND $\geqslant 4$ copies in < 10\% of cells |
| lo polysomic | LO-POL | $\geqslant 4$ copies in 10-40\% of cells |
| hi polysomic | HI-POL | $\geqslant 4$ copies in $\geqslant 40 \%$ of cells |
| amplification | AMP | tight $E G F R$ gene clusters AND EGFR:CEP7 $\geqslant 2$ OR $\geqslant 15$ copies in $\geqslant 10 \%$ of cells |

Supplemental Table 1B.

| PDX $^{2}$ | Number of <br> Cells | Total EGFR <br> for N cells | Total CEP7 <br> for $\mathbf{N}$ cells | Average <br> EGFR/cell | Average <br> CEP7/cell | Ratio <br> EGFR/CEP7 | $\geqslant 4$ EGFR <br> per cell (\%) | FISH <br> classification | EGFR <br> H-score ${ }^{3}$ | $3+$ EGFR <br> $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HCI-001 | 30 | 67.2 | 91.3 | 2.24 | 3.04 | 0.74 | 3.3 | LO-TRI | 188 | 26 |
| HCI-002 | 30 | 71.3 | 70.3 | 2.38 | 2.34 | 1.01 | 0.6 | LO-TRI | 121 | 16 |
| HCI-004 | 20 | 41.0 | 38.2 | 2.05 | 1.91 | 1.07 | 2.0 | LO-TRI | 76 | 0 |
| HCI-010 | 30 | 89.0 | 87.3 | 2.97 | 2.91 | 1.02 | 25.8 | LO-POL | 228 | 38 |
| HCI-015 | 30 | 67.3 | 81.5 | 2.24 | 2.72 | 0.83 | 2.5 | LO-TRI | 193 | 33 |
| HCI-016 | 30 | 75.8 | 67.3 | 2.53 | 2.24 | 1.13 | 10.0 | HI-TRI | 90 | 0 |
| HCI-019 | 30 | 71.5 | 66.8 | 2.38 | 2.23 | 1.07 | 5.8 | LO-TRI | 208 | 19 |
| HCI-025 | 30 | 76 | 70 | 2.53 | 2.33 | 1.09 | 16.7 | LO-POL | 230 | 30 |

[^0]SUPPLEMENTAL TABLE 2. Figure-associated p-values
Supplemental Table 2A.

| PDX | HCI-001 | HCI-002 | HCI-004 | HCI-010 | HCI-015 | HCI-016 | HCI-019 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Figure 2A. | 0.0038 | $<0.0001$ | 0.0105 | 0.0011 | 0.0786 | 0.3159 | 0.0090 |

Supplemental Table 2B.

| HCI-010 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{4 1 4}$ | $\mathbf{2 6 3 + 4 1 4}$ | $\mathbf{0 9 5}$ | $\mathbf{2 6 3 + 0 9 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Figure 3A. | vehicles | NA | 0.0075 | 0.1676 | 0.0007 | 0.2707 | 0.0047 |

## Supplemental Table 2C.

| HCl-010 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | 095 | $\mathbf{2 6 3 + 0 9 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Figure 4A. | vehicles | NA | 0.0006 | $<0.0001$ | $<0.0001$ | 0.0011 | $<0.0001$ |
| HCl-025 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | 095 | $\mathbf{2 6 3 + 0 9 5}$ |
| Figure 4C. | vehicles | NA | 0.0143 | $<0.0001$ | $<0.0001$ | $<0.0001$ | $<0.0001$ |

## Supplemental Table 2D.

| HCI-010 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | 095 | $\mathbf{2 6 3 + 0 9 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Figure 5A. | vehicles | NA | 0.0004 | 0.0080 | $<0.0001$ | 0.1723 | 0.0007 |
| HCI-025 |  | vehicles | $\mathbf{2 6 3}$ | 321 | $\mathbf{2 6 3 + 3 2 1}$ | 095 | $\mathbf{2 6 3 + 0 9 5}$ |
| Figure 5B. | vehicles | NA | 0.1280 | 0.0223 | 0.0056 | 0.3973 | 0.4740 |

Supplemental Table 2E.

| PDX | HCI-001 | HCI-002 | HCI-004 | HCI-010 | HCI-015 | HCI-016 | HCI-019 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplemental Figure 2B. | 0.0439 | $<0.0001$ | 0.0005 | 0.0148 | 0.4633 | 0.1789 | 0.2968 |

Supplemental Table 2F.

| HCI-010 |  | vehicles | 263 | 414 | $\mathbf{2 6 3 + 4 1 4}$ | 095 | $263+095$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplemental Figure 3B. | vehicles | NA | 0.1825 | 0.2469 | 0.0442 | 0.2551 | 0.1878 |

## Supplemental Table 2G.

| HCI-010 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | $\mathbf{0 9 5}$ | $\mathbf{2 6 3 + 0 9 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplemental Figure 4B. | vehicles | NA | 0.0119 | $<0.0001$ | $<0.0001$ | 0.0444 | 0.0003 |
| HCI-025 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | $\mathbf{0 9 5}$ | $\mathbf{2 6 3 + 0 9 5}$ |
| Supplemental Figure 6B. | vehicles | NA | 0.0507 | $<0.0001$ | $<0.0001$ | 0.0073 | $<0.0001$ |

Supplemental Table 2H.

| HCl-025 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | $\mathbf{0 9 5}$ | $\mathbf{2 6 3 + 0 9 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplemental Figure 7B. | vehicles | NA | 0.2111 | 0.0075 | 0.0037 | 0.1599 | 0.0267 |
| Supplemental Figure 7C. | vehicles | NA | 0.0199 | 0.0017 | 0.0009 | 0.0239 | 0.0023 |

Supplemental Table 2I.

| HCI-010 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | $\mathbf{0 9 5}$ | $\mathbf{2 6 3 + 0 9 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplemental Figure 8B. | vehicles | NA | 0.2598 | 0.0015 | 0.0004 | 0.3222 | 0.0211 |
| HCl-025 |  | vehicles | $\mathbf{2 6 3}$ | $\mathbf{3 2 1}$ | $\mathbf{2 6 3 + 3 2 1}$ | $\mathbf{0 9 5}$ | $\mathbf{2 6 3 + 0 9 5}$ |
| Supplemental Figure 8F. | vehicles | NA | 0.3414 | 0.0133 | 0.0002 | 0.4212 | 0.0659 |

SUPPLEMENTAL TABLE 3. PDX models of triple-negative breast cancers

| PDX | Patient Source ${ }^{4}$ | Patient | HER2 Status ${ }^{6}$ | $\begin{gathered} \hline \text { ER } \\ \text { Status } \end{gathered}$ | PR <br> Status | $\begin{gathered} \text { EGFR } \\ \text { H-score }{ }^{7} \end{gathered}$ | $\begin{gathered} \hline \text { BCL-2 } \\ \text { H-score } \end{gathered}$ | $\begin{aligned} & \text { BCL-X } \mathrm{L} \\ & \text { H-score } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HCI-023 | PT | - prior Tx | - | - | - | 170 | 75 | 55 |
| HCI-024a | MT | + prior Tx | - | - | - | 170 | 85 | 105 |
| HCI-024b | MT | + prior Tx | - | - | - | 155 | 15 | 150 |
| HCI-025 | MT | + prior T× | - | - | - | 230 | 10 | 210 |
| HCI-027 | PT | + prior T× | - | - | - | 150 | 20 | 125 |
| HCI-028 | PE | + prior Tx | - | - | - | 15 | 20 | 205 |
| HCI-030 | PT | - prior Tx | - | - | - | 200 | 30 | 105 |

[^1]

Supplemental Figure 1. Experimental designs. Treatment groups, doses and schedules are presented for Figure 2 (a), Figure 3 (b) and Figure 4 (c-d) pre-clinical studies.


Supplemental Figure 2. PDX pre-treatment tumor volume, post-treatment tumor volume and H\&E slide scans corresponding to Figure 2. PDX pre-treatment tumor volumes were based upon in vivo measurements in two dimensions (a). PDX post-treatment tumor volumes were based upon ex vivo measurements in three dimensions (b). Each symbol represents a tumor. Each line represents the mean. pvalues $<0.05\left({ }^{*}\right),<0.01\left({ }^{* *}\right),<0.001\left({ }^{* * *}\right)$ and $<0.0001\left({ }^{* * * *)}\right.$ are indicated (Welch's one-tail test). pvalues $>0.05=\mathrm{NS}$. p-values for all seven vehicle versus combo comparisons are presented in Supplemental Table 2e. The digitized H\&E slides are presented for vehicle versus combo comparisons (c). Note each slide represents a tumor bisected along the longitudinal axis. Note tumor slides with more than two sections represent tumors that required trimming during the processing steps. Scale bar, $\sim 0.5 \mathrm{~cm}$.


Supplemental Figure 3. HCI-010 pre-treatment tumor volume, post-treatment tumor volume and H\&E slide scans corresponding to Figure 3. PDX pre-treatment tumor volumes were based upon in vivo measurements in two dimensions (a). PDX post-treatment tumor volumes were based upon ex vivo measurements in three dimensions (b). Each symbol represents a tumor. Each line represents the mean. pvalues for the most relevant comparisons are indicated (Welch's one-tail test: ABT-263 versus ABT$263+$ ABT-414, p-value $>0.05=$ NS and ABT-263+ABT-414 versus ABT-263+AB095-MMAF, p-value $>0.05=$ NS). p -values for vehicle versus ABT-263, ABT-414, ABT-263+ABT-414, AB095-MMAF and ABT-263+AB095-MMAF comparisons are presented in Supplemental Table 2f. The digitized H\&E slides are presented for treatment group comparisons (c). Note each slide represents a tumor bisected along the longitudinal axis. Scale bar, $\sim 0.5 \mathrm{~cm}$.


Supplemental Figure 4. HCI-010 pre-treatment tumor volume, post-treatment tumor volume, tumor growth over time and H\&E slide scans corresponding to Figure 4. PDX pre-treatment tumor volumes were based upon in vivo measurements in two dimensions (a). PDX post-treatment tumor volumes were based upon ex vivo measurements in three dimensions (b). Each symbol represents a tumor enrolled in one of two independent treatment studies (e.g. blue, study A and red, study B). Each line represents the grand mean. p -values for the most relevant comparisons are indicated (Welch's one-tail test: p -value $<$ 0.01 (**), ABBV-321 versus ABT-263+ABBV-321 and p-value $<0.05\left(^{*}\right)$, ABT-263+ABBV-321 versus ABT-263+AB095-PBD). p-values for vehicle versus ABT-263, ABBV-321, ABT-263+ABBV-321, AB095-PBD and ABT-263+AB095-PBD comparisons are presented in Supplemental Table 2g. Caliperbased assessments of tumor volume $\left(\mathrm{mm}^{3}\right)$ over time (days) were based upon in vivo measurements in two dimensions (c). Each symbol (except for d3) represents the mean of 7-9 tumors from the two independent treatment studies. d3 represents the mean of 2-4 tumors from one of the two studies. Bars, $\pm$ SEM. The digitized H\&E slides are presented for treatment group comparisons (d). Note each slide represents a tumor bisected along the longitudinal axis. Scale bar, $\sim 0.5 \mathrm{~cm}$.


Supplemental Figure 5. Comparison of EGFR, BCL-2 and BCL- $\mathrm{X}_{\mathrm{L}}$ expression levels. Seven additional PDX models of TNBC were immuno-stained for EGFR (a), BCL-2 (b) and BCL-X $\mathrm{X}_{\mathrm{L}}$ (c). Representative immuno-stains are shown. The IHC results were semi-quantitated via H -score assessment and summarized in Supplemental Table 3. HCI-024 ${ }_{a}$ and HCI- $024_{b}$ represent second-generation tumors established within two separate mice. Scale bar, $\sim 200 \mu \mathrm{~m}$.


Supplemental Figure 6. HCI-025 pre-treatment tumor volume, post-treatment tumor volume, tumor growth over time and H\&E slide scans corresponding to Figure 4. PDX pre-treatment tumor volumes were based upon in vivo measurements in two dimensions (a). PDX post-treatment tumor volumes were based upon ex vivo measurements in three dimensions (b). Each symbol represents a tumor enrolled in one of two independent treatment studies (e.g. blue, study A and red, study B). Each line represents the grand mean. p-values for the most relevant comparisons are indicated (Welch's one-tail test: p-value > $0.05=$ NS, ABBV-321 versus ABT-263+ABBV-321 and p-value $<0.05$ (*), ABT-263+ABBV-321 versus ABT-263+AB095-PBD). p-values for vehicle versus ABT-263, ABBV-321, ABT-263+ABBV321, AB095-PBD and ABT-263+AB095-PBD comparisons are presented in Supplemental Table 2g. Caliper-based assessments of tumor volume $\left(\mathrm{mm}^{3}\right)$ over time (days) were based upon in vivo measurements in two dimensions (c). Each symbol represents the mean of 7-10 tumors from the two independent treatment studies. Bars, $\pm$ SEM. The digitized H\&E slides are presented for treatment group comparisons (d). Note each slide represents a tumor bisected along the longitudinal axis. Scale bar, $\sim 0.5$ cm .


Supplemental Figure 7. HCI-025 pre-treatment tumor volume, post-treatment tumor volume, tumor growth and H\&E slide scans. PDX pre-treatment tumor volumes were based upon in vivo measurements in two dimensions (a). PDX post-treatment tumor volumes were based upon ex vivo measurements in three dimensions (b). p-values for the most relevant comparisons are indicated (Welch's one-tail test: pvalue $>0.05=\mathrm{NS}$, ABBV-321 versus ABT-263+ABBV-321 and p-value $<0.05$ (*), ABT-263+ABBV321 versus ABT-263+AB095-PBD). p-values for vehicle versus ABT-263, ABBV-321, ABT-263+ABBV-321, AB095-PBD and ABT-263+AB095-PBD comparisons are presented in Supplemental Table $2 \mathbf{h}$. Graph $\mathbf{c}$ presents tumor growth as a percent of pre-treatment tumor volume for each tumor ( $\mathrm{n}=$ $4-5$ per group). Each symbol represents a tumor. Each line represents the mean. p-values for the most relevant comparisons are indicated (Welch's one-tail test: p-value $<0.01$ (**), ABBV- 321 versus ABT$263+$ ABBV-321 and p-value $<0.01\left({ }^{* *}\right)$, ABT-263+ABBV-321 versus ABT-263+AB095-PBD). pvalues for vehicle versus ABT-263, ABBV-321, ABT-263+ABBV-321, AB095-PBD and ABT$263+$ AB095-PBD comparisons are presented in Supplemental Table 2h. Caliper-based assessments of tumor volume ( $\mathrm{mm}^{3}$ ) over time (days) were based upon in vivo measurements in two dimensions (d). Each symbol represents the mean of 4-5 tumors. Bars, $\pm$ SEM. The digitized H\&E slides are presented for treatment group comparisons (e). Note each slide represents a tumor bisected along the longitudinal axis. Scale bar, $\sim 0.5 \mathrm{~cm}$.


Supplemental Figure 8. Adverse events associated with combined treatments. Deaths encountered among HCI-010 (a) and HCI-025 (e) tumor-bearing mice are presented for each treatment group. Graphs b and $\mathbf{f}$ present body weight reductions as a percent of pre-treatment body weight for each animal. Each symbol represents an animal enrolled in one of two independent treatment studies (e.g. blue, study A and red, study, B). The open symbols highlight body weight reductions associated with deaths. Note body weight reductions associated with deaths do not represent extreme weight loss conditions. Each line represents the grand mean. p-values (Welch's one-tail test) for vehicle versus ABT-263, ABBV-321, ABT-263+ABBV-321, AB095-PBD and ABT-263+AB095-PBD comparisons are presented in Supplemental Table 2i. Graphs c-d and g-h compare and correlate body weight reductions and tumor volume reductions for combination-treated HCI-010 (c-d) and HCI-025 (g-h) animals. The open symbols highlight the animals that died. Note deaths were not observed in mice that exhibited extreme tumor regressions. The Pearson correlation [r] and associated p-values are indicated. Deaths encountered among nontumor-bearing mice (NT-NOD.scid) are presented for each treatment group (i). Note the AB095-PBD hatched-bar indicates an accidental death on day fifteen due to treatment-associated handling (\#22, $\mathbf{j}$ ). Graph $\mathbf{j}$ presents body weight reductions as a percent of pre-treatment body weight for each animal. Each symbol represents an animal. Each line represents the mean. Graphs $\mathbf{k}$ and $\mathbf{l}$ present body weight reductions over the course of the treatment study for PBD-loaded antibodies combined with navitoclax. Graphs $\mathbf{m}$ (alanine aminotransferase; ALT), $\mathbf{n}$ (aspartate aminotransferase; AST), $\mathbf{o}$ (alkaline phosphatase; ALP) and $\mathbf{p}$ (albumin; ALB) present serum-associated liver function testing. Each symbol represents an animal. Each line represents the mean. For cross comparisons, numerical identifiers (\#1-30) are indicated for each nontumor-bearing animal. Note three serum samples were unavailable for analysis (\#4, \#5, \#22).


[^0]:    ${ }^{1}$ FISH-based copy number classifiers as described (47)
    ${ }^{2} E G F R$ :CEP7 FISH values represent either the average of 4-6 tumors (HCI-001;002;004;010;015;016;019) or one tumor (HCI-025) evaluated ${ }^{3}$ EGFR H-scores as determined in Table 2 and Supplemental Table 3

[^1]:    ${ }^{4} \mathrm{PT}$, primary breast tumor; PE, pleural effusion; MT, metastatic breast tumor
    ${ }^{5} \mathrm{~T} \times$, unpublished data kindly provided by A.W.
    ${ }^{6} \mathrm{HER} 2$, ER, PR unpublished data kindly provided by A.W.
    ${ }^{7} \mathrm{H}$-score represents one tumor surveyed per PDX kindly provided by A.W.

