Secondary prevention of Alzheimer's dementia - neuroimaging contributions

Mara ten Kate, Silvia Ingala, Adam J. Schwarz, Nick C. Fox, Gaël Chételat, Bart N.M. van Berckel, Michael Ewers, Christopher Foley, Juan Domingo Gispert, Derek Hill, Michael C. Irizarry, Adriaan A. Lammertsma, José Luis Molinuevo, Craig Ritchie, Philip Scheltens, Mark E. Schmidt, Pieter Jelle Visser, Adam Waldman, Joanna Wardlaw, Sven Haller, Frederik Barkhof

Supplementary Tables

Table S1: Incidental findings on MRI that may interfere with assessment of clinical and/or cognitive outcomes

Clinically significant findings (reasons for exclusion)							
Subdural hematoma with compression							
Territorial infarcts							
Recent parenchymal haemorrhage							
Obstructive hydrocephalus							
Malignant intra-axial tumours (gliomas, metastases)							
Large extra-axial tumours							
Potentially significant findings							
Clear evidence of a neurodegenerative disorder other than AD							
Extensive deep white matter lesions (Fazekas grade 3)							
Multiple lacunes (>4)							
Small chronic subdural hematoma or effusion without compression							
Small benign extra-axial tumours without mass effect							
Communicating hydrocephalus							
Aneurysms, AVM or cavernoma							
Large arachnoid cysts with compression							
Carotid occlusion							
Cerebral microbleeds with evidence of past macroscopic haemorrhage							
Demyelinating disease							
Significant osseous and extra-cranial soft tissue pathology							

Reference		Study Desi	ign		Measurement type	Main outcome
	Cohort	Size	Follow- up	Mean age		
Burnham 2016	AIBL	N=573	6 years	73	- PiB-PET - HC volume - HC atrophy rate	Subjects with abnormal amyloid and low hippocampal volume at baseline had faster hippocampal atrophy rates than those with normal biomarkers at baseline.
Schott 2010	ADNI	N=105	1 year	75	 CSF amyloid HC atrophy rate Ventr atrophy rate WB atrophy rate 	Aβ+: Increased atrophy rates (all measures).
Andrews 2013	AIBL	N=66	18 months	73	 PiB-PET HC atrophy rate Ventr atrophy rate WB atrophy rate 	Aβ+: Increased hippocampal atrophy rates. Non-significant higher rates of whole brain and ventricular atrophy.
Doré 2013	AIBL	N=93	36 months	74	- PiB-PET - Cortical thickness	$A\beta$ +: Increased atrophy rates in temporal lobe and hippocampus. Reduced cortical thickness in precuneus and hippocampus associated with episodic memory impairment.
Nosheny 2014	ADNI	N=566 including MCI	4 years	75	- PiB / AV45 PET - HC atrophy rates	Aβ+: Increased hippocampal atrophy rates.
Mattsson 2014	ADNI	N=47	Up to 4 years	76	- ROI volumes - Cortical thickness - CSF amyloid	$A\beta$ +: Increased atrophy rates in frontoparietal regions, cingulate, amygdala and temporal regions.
Chetelat 2012	AIBL	N=74	18 months	74	- PiB-PET	$A\beta$ +: Higher rates of atrophy; highest significance in temporal neocortex and posterior cingulate cortex.
Sabuncu 2011	ADNI	N=92	1 year	67	 CSF amyloid HC volume HC atrophy rate AD-regions cortical thickness 	$A\beta$ +: Reduced baseline cortical thickness. No difference in hippocampal volume at baseline or atrophy rates.

Table S2: Effect of amyloid on longitudinal MRI measures in cognitively normal subjects.

Jack 2014	Mayo Clinic Study of Aging	N=252	Median 1.4 years	78	- PiB-PET - AD-signature region atrophy rate	Increased brain atrophy rates in subjects with both $A\beta$ + and evidence of neurodegeneration (decreased hippocampal volume) at baseline
Knopman 2013	Mayo Clinic Study of Aging	N=191	15 months	77	- PiB-PET - HC atrophy rates	Increased hippocampal atrophy rates in subjects with both $A\beta$ + and evidence of neurodegeneration (hippocampal atrophy or FDG-PET hypometabolism) at baseline.
Desikan 2011	ADNI	N=107	Mean 2.14 year	76	- CSF - Entorhinal cortex atrophy	Increased entorhinal cortex atrophy only in subjects with both decreased CSF A β and evidence of neurodegeneration (elevated CSF phosphorylated tau) at baseline.
Ewers 2012	ADNI	N=124	2 years	76	- PiB-PET	Aβ+: Increased medial temporal lobe and precuneus volume decline
Petersen 2016	Mayo Clinic Study of Aging	N = 286	Median 2.5 y	78	- PiB-PET - HC atrophy rates - Ventricular enlargement	Increased hippocampal atrophy and ventricular enlargement rates associated with elevated amyloid levels.