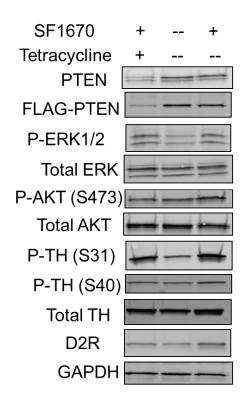
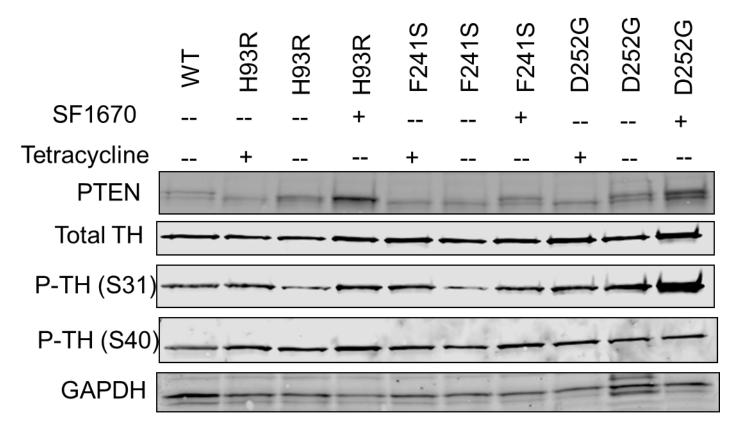

Supplementary Information

Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits Pten


 $Xin\ He^{1,2}\ Stetson\ Thacker^{1,2,3}\ Todd\ Romigh^{1,2}\ Qi\ Yu^{1,2}\ Thomas\ W\ Frazier\ Jr^{1,2,3,4,5}$ and Charis $Eng^{1,2,3,6,7,8,9}$

¹Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA ²Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA ³HHMI Graduate Program, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA ⁴Center for Autism, Pediatrics Institute, Cleveland Clinic, Cleveland, OH, USA ⁵Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA ⁶Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA ⁷Stanley Shalom Zielony Institute of Nursing Excellence, Cleveland Clinic, Cleveland, OH, USA ⁸Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA ⁹CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA


Supplementary Figures


Supplementary Figure 1A. Immunofluorescent staining of frontal sections of mouse brains indicates increased D2R expression and larger nuclei in Pten^{m3m4/m3m4} mice.

Supplementary Figure 1B. Quantification of D2R immunofluorescence in triplicates of each genotype's frontal section of mouse brains indicates the mutant D2R immunofluorescence is significantly increased in comparison to the immunofluorescence in the wild-type (P = 0.021).

Supplementary Figure 2. Inhibition of ectopic and endogenous PTEN function with SF1670 leads to an increase in phosphorylation of TH in PC12 cells. PTEN inhibitor is applied in lanes 1 and 3 (+) but off (-) in lane 2. Tetracycline is on (+) in lane 1 turning off ectopic expression of wildtype PTEN in PC12 cells that has endogenous wildtype PTEN. Tet-off (-) turns on ectopic expression of wildtype human PTEN (lanes 2 and 3).

Supplementary Figure 3. Overexpression of naturally occurring ASD-associated germline *PTEN* mutations are unable to completely suppress TH phosphorylation. When tetracycline is applied (Tet+), ectopic PTEN expression is turned off. When tetracycline is removed (Tet-off; -), ectopic expression of PTEN occurs.