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Additional methods 

Controlling for sample size bias in the estimation of functional connectivity 

Since CIPLV is biased by the sample size (Supplementary Figure 1.a), we computed 

connectivity using the same number of epochs (Nsel) for each subject. However, this approach 

presents a challenge since there is a large difference in the number of available epochs (Ntot) 

between recordings. To avoid rejecting a significant amount of recordings because they do not 

have enough valid data, we have to use a relatively low value for Nsel: 20 1-s epochs.  

Figure 1.b illustrates the tradeoff in choosing the optimal value for Nsel. We used bootstrapping 

to compute the functional connectivity as the mean value of a set of N estimates based on Nsel-

epoch random subsamples (without replacement), with N taken as twice the value of Ntot divided 

by Nsel. For example, for a recording with Ntot=100 epochs, this rule results in 

N=2xNtot/Nsel=2x100/20, or 10 estimates. This way, most epochs (but not all, since the selection 

is random) are used to obtain the bootstrapped estimates, with epochs being used on average 

twice. This approach ensured we took advantage of most of the available data while eliminating 

the bias due to differences in the number of available epochs across subjects, sites, and time 

points. 

 

Reliability of CIPLV 

To illustrate the superior reliability of CIPLV estimates compared to the often-used weighted PLI 

(wPLI) measure, we bootstrapped the estimation of the CIPLV and wPLI for 100 iterations and 

computed the mean and the standard deviation of these samples for every pair of channels. 

Figure 1.c-e shows the distribution of these standard deviations (c), mean (d), and the ratio 
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std/mean (e) across pairs of regions. Standard deviations are expected to grow larger with 

larger mean values, which is not indicative of lesser reliability but of the data being on a different 

scale. This difference in scaling can be canceled out by normalizing the standard deviations by 

the corresponding mean values. The larger distribution of the normalized standard deviations of 

wPLI indicates that this measure tends to be less reliable across samples than CIPLV. This 

illustrative example is based on a single randomly chosen subject but reflective of the increased 

reliability of CIPLV we observed consistently during our preliminary analyses.  
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Supplementary Figure 1. a) Average CIPLV estimates when using subsets containing the 

numbers of epochs (Nsel) specified along the x-axis. b) Histogram of the number of clean 

epochs available for analysis across the different sites and time points. By using a 

threshold Nsel at 20 epochs (black dashed line), we reject 21 recordings on the grounds 

that they did not have enough epochs to allow for reliable estimation of functional 

connectivity. b-d) Distribution of the standard deviation (std) (b), mean (c), and std/mean 

(d) values for the CIPLV and wPLI measures for all pairs of regions for a randomly picked 

subject. Statistics (mean, std, std/mean) are computed across bootstrapped samples per 

pair of regions, whereas plots show the distribution of these statistics across region 

pairs. 

 

Outlier rejection 

We rejected the EEG recordings in which the functional connectivity was considered a statistical 

outlier (see Supplementary Figure 2) using the thresholds defined as follows 

 𝑡ℎ!"# = 𝑄$ − 1.5(𝑄% − 𝑄$)                                                                                      (4.a) 

 𝑡ℎ!&' = 𝑄% + 1.5(𝑄% − 𝑄$)                                                                                      (4.b) 

where Q1 and Q3 represent the first and third quartiles, respectively, and the 1.5 factor is such 

that for a normal distribution, these thresholds correspond to rejecting points more extreme than 

99.3% of the distribution. We chose these non-parametric thresholds because they offer more 

stability against departure from normality or symmetry than would thresholds relying on 

parameters of the normal distribution such as the mean and the standard deviation. This 

procedure resulted in the rejection of 11 recordings, distributed as follows: 

● month: 6: 4/141 (2.8%); 12: 7/158 (4.4%) 
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● group: TLA: 7/149 (4.7%); ELA-noASD: 3/106 (2.8%); ELA-ASD: 1/44 (2.3%) 

● site: London: 5/157 (3.2%); Seattle: 6/142 (4.2%) 

● sex: F: 8/146 (5.5%); M: 3/153 (2.0%) 

 

 

Supplementary Figure 2. Stacked histograms illustrating the rejection of statistical 

outliers. Vertical lines show the median (solid black lines), the first and third quartiles 

(dashed black lines), and the threshold defined in (4) (dashed red lines). Rows and 

columns separate the recording site and the age at the time of recording, respectively.  

 

Rejection of channels and independent components 

We interpolated channels flagged as containing artifacts using spherical splines, as 

implemented in MNE-Python. Similarly, we removed from the raw EEG all independent 
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components flagged as not representing neural signals. This procedure is described and 

validated in detail in [23]. Supplementary Figure 3 illustrates the distribution of dropped 

channels and independent components, split by site, sex, and group. We computed two mixed-

effect linear regressions using the formula “Y ~ age + site + sexe + group”, with Y taken as the 

percentage of bad channels and independent components, and with the participant identifier as 

grouping factor (i.e., random effect). The proportions of bad channels and components were 

impacted only by the site factor (channel: p=7.7e-19, component: p=1.7e-21; all other p-values 

> 0.05). Supplementary Figure 3 shows relatively large rejection proportions. This high level of 

rejection is partly due to the amount of noise present in infant EEG recordings. However, it is 

also due to a rather conservative inclusion of channels and components. This approach has 

been shown to be effective in avoiding rejecting more recordings than necessary and increasing 

the signal-to-noise ratio in EEG data, as illustrated by larger evoke-related potentials than when 

using alternative pipelines [23]. 

 

Supplementary Figure 3. Comparison of the percentage of bad channels and 

independent components rejected. 
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Effect of group imbalance on statistical power 

Our analyses have been limited by decreased statistical power due to diagnostic group 

imbalance. To exemplify the effect of an imbalance between groups, we consider a fictive 

sample of 20 ASD subjects and 200 controls, and we suppose that we are interested in a 

measure that has a normal distribution with mean values of 𝜇1 and 𝜇2 for these two groups and 

the same standard deviation across groups 𝜎=1. The standard error for these two distributions 

will be equal to (
√*+

= $
√*+

= 0.224 and (
√*++

= $
√*++

= 0.071, respectively. Consequently, the 

difference of the means will be a normal distribution with mean values 𝜇=𝜇1-𝜇2 and a pooled 

standard error equal to 𝑠𝑒 = 4 $
*+
+ $

*++
= 0.235. This standard error is the same as we would 

obtain with equal samples of 36.4 subjects. That means that our total unbalanced sample of 220 

subjects has the same statistical power as a balanced sample of about 72 subjects (i.e., the 

effective sample size for this study is equal to 72 subjects, not 220). Thus, in our study, we do 

not benefit much from our larger sample of control subjects for group comparisons with ELA-

ASD. We might further note that a longer follow-up might have increased the size of the ASD 

group, particularly for the Seattle site, since ASD often goes undetected at young ages (e.g., at 

2 years old) [61]. This limitation is not present for comparison between ELA and TLA since 

these groups are balanced. The original studies were powered to study such group 

comparisons. 

 

Additional results 

Additional linear regression 

The results of models (2) and (3) without averaging connectivity measures within recordings are 

shown in Supplementary Tables 1 and 2. These models show more significant p-values and 

https://www.zotero.org/google-docs/?ze4NgD
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even some significant interactions with group and overall ADOS CSS. However, we note the 

absence of significance for the main effects of group and ADOS, which casts some doubts on 

the reliability of these interactions. Further, we prefer the more conservative model presented in 

the main text because of the difficulty of fully capturing the correlation structure between 

observations in models with large amounts of repeated observations. We consider this 

complexity to be more likely to lead to misleading results. For example, in this specific case, the 

connectivity measures establish a mapping between two sets of regions. Thus, these measures 

are likely to have a complex correlational structure, which would be hard to properly model 

without increasing significantly the complexity of these models, the number of parameters, and 

the difficulty of finding reliable parameter estimates. Thus, we believe the model using averaged 

connectivity to be more conservative and reliable, although it is likely to have less statistical 

power and more susceptible to false negatives. 
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Supplementary Table 1. Model (2), using all connectivity measures (no within-recording 

averaging). 
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Supplementary Table 2. Model (3), using all connectivity measures (no within-recording 

averaging). 

 

Effect of frequencies 

Our preliminary analysis did not reveal reliable indications for analyzing the effect of 

frequencies. Further, systematically analyzing effects across frequencies would have presented 

issues related to multiple tests, which compounded with limited sample sizes and statistical 

power, was not viable. Nevertheless, for the sake of comprehensiveness, we provide in 

Supplementary Figure 4-6 a visualization of average connectivity per site, sex, age, group, and 

frequency. 
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Supplementary Figure 4. Average connectivity across frequencies for the London site. 
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Supplementary Figure 5. Average connectivity across frequencies for the Seattle site. 
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Supplementary Figure 6. Average connectivity across frequencies for the pooled dataset. 
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Additional statistical analysis of localized under and overconnectivity 

To further document the visual analysis presented in Figure 2, we ran a statistical analysis to 

test for systematically over or underconnected regions. We first computed the average 

connectivity per region (i.e., we averaged the connectivity that a given region has with all other 

regions). To look for regions reliably over or underconnected across sites, we listed the regions 

that were showing Cohen’s d statistics above 0.3 (Supplementary Table 3) or under 0.3 

(Supplementary Table 4) at both sites. For these connections, we also reported the t-statistics 

and p-values from Student’s t-tests for two independent samples. Although some p-values are 

below 0.05, none are consistently significant across both sites. Also, none of these p-values are 

sufficiently low to survive correction for multiple tests.  

Supplementary Table 3. Connections with Cohen’s d statistics above 0.3 for both sites. 

 

Supplementary Table 4. Connections with Cohen’s d statistics below -0.3 for both sites.  
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Additional statistical analysis of localized correlations between CSS scales and functional 

connectivity 

We conducted an analysis similar to the previous one to evaluate statistically whether the 

relationship between ADOS CSS and functional connectivity depends on brain regions. Here 

again, we average connectivity per brain region and look for consistently large correlations (r > 

0.2 or r < -0.2) across sites. Supplementary Tables 5-7 list the regions fulfilling this criterion for 

both the RRBs and social CSS scales. No region had r < -0.2 at both sites for the social CSS 

scale. P-values corrected for multiple testing have been computed as the multiplication of the p-

values from both sites (i.e., the probability of both events happening at the same time) multiplied 

by the number of joint tests (i.e., Bonferonni correction for two age points X 65 brain regions). 

This correction for multiple tests is rather conservative (i.e., because of correlation between age 

points and brain regions, the equivalent number of independent tests is likely significantly 

smaller than 2 X 65), thus, although only one region was marginally statistically significant 

(p=0.058), this result is worth nothing. Also, the pattern of these results is interesting, with only 

positive correlations at 6 months and negative correlations at 12 months, mostly in frontal 

regions.   

Supplementary Table 5. Regions with a Pearson’s coefficient of correlation between the 

social CSS scale and average functional connectivity above 0.2 for both sites.  

 



 

14 

Supplementary Table 6. Regions with a Pearson’s coefficient of correlation between the 

RRB CSS scale and average functional connectivity above 0.2 for both sites.  

 

Supplementary Table 7. Regions with a Pearson’s coefficient of correlation between the 

RRB CSS scale and average functional connectivity below -0.2 for both sites.  
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Additional Supplementary Figures 

 

 

Supplementary Figure 7. Regression between the logit-transformed CIPLV connectivity 

and overall ADOS calibrated severity scores for the ELA infants, per sex (rows), time 

point (columns), and sites (blue: London; red: Seattle; black: Pooled). The dashed lines 

indicate the average connectivity for TLA infants. Pearson’s coefficients of correlation (r) 

are indicated along with p-values (p) from robust linear regressions. Stars indicate 

participants diagnosed with ASD, whereas dots indicate neurotypical individuals. 
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Supplementary Figure 8. Comparisons of ADOS scores collected first (around 24 

months) and last (around 36 months) for subjects with two ADOS assessments. 

Kendall’s tau non-parametric coefficient of correlation is shown in the upper left corner 

of each panel. 
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Supplementary Figure 9. Same as Figure 5 and Supplementary Figure 7, but using the 

latest ADOS scores instead of the earliest.  a) Overall. b) Social affect. c) RRBs.  

 

 

Supplementary Figure 10. Distribution of sample sizes across studies of EEG/MEG 

functional connectivity in autism, for the ASD (left), control (middle), and total (right) 

samples. Vertical dashed black lines indicate our sample size (average number of valid 

recordings for the two time points), pooled across sites.  
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