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Summary 
Artificial intelligence (AI), defined as computers that behave in ways that, until recently, were 
thought to require human intelligence, has the potential to substantially improve all facets of 
radiology [1]. AI is complex, has numerous potential pitfalls, and is inevitably biased to some 
degree. This statement aims to inform a common interpretation of the issues and the ultimate 
goals of using AI-based intelligent and autonomous machines in radiology. Technology tilts 
people in certain directions. We hope to tilt the radiology approach to this powerful technology 
in the correct direction up front, and describe a path to aspire radiology AI’s builders and users 
to enhance radiology’s intelligence in humane ways to promote just and beneficial outcomes, 
while avoiding harm to those who expect us to do right by them.  
 
Intelligent and autonomous machines will make substantial clinical and workflow decisions in 
radiology. While this will mature into reliable and robust infrastructures, currently no one has 
substantial experience using such machines for rigorous patient care in diverse settings. This 
gives rise to potential errors with high consequences. We hypothesize what is important when 
using such machines, such as transparency and explainability, and we have rudimentary 
experience managing AI tools. We have much to learn, and extensive research remains to be 
done to understand how to use these machines in widespread clinical practice, and the 
operational characteristics they should have. 
  
Because developing AI-driven machines today requires massive amounts of well-labeled 
radiology data, the value of those data is skyrocketing and the drive to provide commercial 
access to radiology data will become overwhelming. Currently the best ways to allow, manage, 
and contract for that data access are evolving at a rate which outstrips our current knowledge 
or abilities. We are at risk of making expensive and calamitous mistakes with radiology data. 
  
In addition to the significant good which will come from using these data to make better 
predictions and improve patient health, there are many ways to unethically capitalize on data 
which may harm patients, other cohorts, or the common good. Limiting radiology AI to ethical 
uses means leaving money on the table. One of our greatest challenges is how to thwart those 
who will attempt to acquire this value. 
  
Patients, radiologists, and other cohorts in the radiology community are at risk of being 
engulfed by digital surveillance, and categorized and manipulated by intelligent and 
autonomous machines. Radiology and other medical data could be weaponized in the same 
way as data from non-medical sources.  
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Radiologists are experts at acquiring information from radiology images. AI can extend this 
expertise, extracting even more information to make better or entirely new predictions about 
patients. At the same time, we see daily the ways that AI potentially hurts both user and those 
on whom it is used, and harms the reputations of organizations and professions. People 
involved with each stage in an AI product’s life cycle must understand it deeply. They have a 
duty to understand the risks of the products they are using, to alert patients and stakeholders 
to those pitfalls as appropriate, and to monitor AI products to guard against harm. They have a 
duty to ensure not just that the use of the product is beneficial overall, but that the distribution 
of benefits among the possible stakeholders is just and equitable. We should realize that 
though most changes will be positive, AI will cause inescapable social and economic change, 
and major social changes such as these are often disproportionately bad for the most 
vulnerable communities. We must do what we can to avoid negative consequences and ensure 
that unavoidable or unexpected negative consequences are not made worse by unethical 
distribution. 
  
AI has dramatically altered the value, use, and potential of misuse of radiology data. 
Radiologists have a moral duty to use the data they collect to improve the common good, 
extract more information about patients and their diseases, and improve the practice of 
radiology. At the same time, they have a duty to not use data in ways that may harm or 
adversely influence patients or discriminate against them. 
  
Bias occurs to some extent with any dataset. This manifests in many ways, each of which 
deserves research and awareness to minimize the effects on the decisions made by AI models. 
  
The radiology community and relevant stakeholders should start now to develop codes of 
ethical practice for AI. Ensuring ethical AI requires a desire to gain trust from all involved. 
Effective regulations, standards, and codes of conduct will need to balance technical, clinical, 
population health, and commercial motivations with appropriate moral concern. Agencies will 
need to have the authority to enforce them. Key to these codes of conduct will be a continual 
emphasis on transparency, protection of patients, and vigorous control of data and algorithm 
versions and uses. AI tools will need to be monitored continuously and carefully to ensure they 
work as expected, and that the decisions they make enable optimal and ethical patient care. 
  
The radiology community is learning about ethical AI while simultaneously trying to invent and 
implement the technology. This is occurring amid technological evolution at a speed and scope 
which are difficult to comprehend. AI will conceivably change radiologists’ roles and positions, 
revolutionize how decisions are made about radiology exams, and transform how radiologists 
relate to patients and other stakeholders. 
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Introduction 
This statement arises from the multi-national radiology community’s desire to examine the 
ethics and code of behavior for AI in radiology. Our goals are to foster trust among all parties in 
radiology AI doing the right thing for patients and the community, and to see ethical aspirations 
applied to all aspects of AI in radiology. To encourage research on these topics, we describe 
ethical issues associated with designing and using autonomous and intelligent systems in 
radiology for the greater good of patients, understanding how they work, and avoiding harm by 
their use. To a lesser extent, we examine objectives for regulations and codes of conduct for 
this field. We illustrate the medical, cultural, and commercial factors which affect the 
confluence of AI, radiology, and ethics.   
 
Radiologists have years of specialized training to acquire the knowledge and skills necessary to 
analyze radiology images to discover intimate and often life-altering information about what is 
occurring inside their patients’ bodies. Patients, other customers, and the public rely on 
radiologists to make decisions based on imaging examinations. This unique decision-making 
capability creates a hierarchy of authority between radiologists and those who rely on them. 
Radiologists’ professional code of ethics aims to ensure that the authority wielded by 
radiologists leads to moral outcomes. AI and machine learning (ML) are statistical methods that 
will increase the information radiologists can extract from radiology examinations, enrich 
radiology decision-making, and improve patient care in radiology.  
 
Going forward, conclusions about images will be made not just by human radiologists, but in 
conjunction with intelligent machines. In some instances, the machines may make better 
decisions, make them more quickly or efficiently, or contradict the human radiologists. AI will 
affect image interpretation, the what and how of reporting, how we communicate, and how we 
bill for services1, 2. AI has the potential to alter professional relationships, patient engagement, 
knowledge hierarchy, and the labor market. Additionally, AI may exacerbate the concentration 
and imbalance of resources, with entities that have significant AI resources having more 
“radiology decision-making” capabilities. Radiologists and radiology departments will also be 
data, categorized or evaluated by AI models. AI will deduce patterns in personal, professional, 
and institutional behavior. AI is transforming traditional thinking about radiology data  how 
‘truthful’ and ‘ethical’ are the data, who owns them, who has access to them, who knows what, 
and how they use that power. 
 
While AI promises to improve quality, patient outcomes, and efficiency, and decrease costs, it 
will also produce new possibilities, consequences, and questions for both patients and the 
radiology community. These issues will be shaped as much by the community’s ethics as by 
technical factors. Other effects will be more indirect, such as algorithms that make enterprise 



9 

or public policy decisions, or find patterns in the data of large populations to improve public 
health and our understanding of diseases and treatments.  
 
Given its potential benefits, we feel there is a duty to actively pursue AI and use it to improve 
radiology. But to ensure the safety of patients and their data, AI tools in radiology need to be 
properly vetted by legitimately chosen regulatory boards before they are put into use.  New 
ethical issues will appear rapidly and regularly, and our appreciation of them will change over 
time. Thus, while it is important to consider the ethics of AI in radiology now, it also will be 
important to reassess the topic repeatedly as our understanding of its impact and potential 
grows and to return to the AI tools being used in radiology to assess whether they meet the 
updated regulations and standards. 
 
At the start, most radiology AI will consist of intelligent clinical decision support models 
integrated into radiologists’ workflow, such as measurement tools or computer assisted 
detection (CAD) already in use today. Increasingly, however, AI agents will be autonomous, and 
make decisions and initiate actions on their own, without radiologists’ supervision.  
  
Extrapolating from other industries and looking far into the future, AI-enabled radiology will 
mature into a complex environment containing dynamic networked systems3. These intricate 
webs of autonomous algorithms will be like multiple radiologists each making decisions about 
one focused portion of an exam. Depending on their consensus, they will then pass the 
examination to other groups of autonomous algorithms, which, in turn will make decisions on 
other parts of the exam. Complex, web-like cascades of these decision-making computers will 
accept and transmit information to each other, and the decisions made will change over time.  
 
Dynamic networked systems for radiology have barely been conceived, and are years from 
being designed or built. Much remains to be learned about how to assemble such systems in a 
robust, secure, accurate, and reliable fashion, or how to understand their “behavior”, or 
processing logic.  
 
Radiologists will remain ultimately responsible for what happens to patients and will need to 
acquire new skills to manage these ecosystems and ensure patients’ well-being. The radiology 
community needs an ethical framework to help steer technological development, influence 
how different stakeholders respond to and use AI, and implement these tools to make best 
decisions and actions for, and increasingly with, patients. We recommend that a committee 
representing each of the relevant stakeholders be assembled in the very near future and tasked 
with producing that framework. 
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Because some AI models are relatively easy to build and train, research and commercial AI-
powered solutions are being produced by a large number of sometimes naive or unprofessional 
actors. This increases the importance of extending existing ethical codes in medicine, statistics, 
and computer science to consider situations specific to radiology AI4–6. 
 
Many fields outside medicine, and medical societies, are evaluating the ethics of AI. Recent 
New England Journal of Medicine and Journal of the American Medical Association articles 
describe both the promise of AI7 and the acute need to address the potential for bias and 
questions about the fiduciary relationship between patients and AI8, 9. Leaders in computer 
science and engineering, including the Institute of Electrical and Electronics Engineers (IEEE), 
the Association for Computing Machinery (ACM), Future of Life Institute, and governmental 
bodies such as the European Commission’s Group on Ethics in Science and New Technologies, 
are updating their recommendations and guidance10–13. Many other professional, regulatory 
and academic bodies have published, or are in the process of preparing statements about 
ethical use of AI. Depending on the focus of the publishing body, the details of these 
statements concentrate on varying aspects of AI deployment and usage, but the commonality 
of principles among these statements is: 

1. Promote well-being, minimize harm, and ensure that the benefits and harms are 
distributed among the possible stakeholders in a just manner.  

2. Respect human rights and freedoms, including dignity & privacy. 
3.  Be transparent and dependable, curtailing bias and decision, while ensuring that the 

locus of responsibility and accountability remains with their human designers or 
operators. 

About this Statement 

This statement is a joint effort by the American College of Radiology, European Society of 
Radiology, Radiology Society of North America, Society for Imaging Informatics in Medicine, 
European Society of Medical Imaging Informatics, Canadian Association of Radiologists, and 
American Association of Physicists in Medicine. The core writing team includes an American 
philosopher, North American and European radiologists, imaging informaticists, medical 
physicists, patient advocates, and attorneys with experience in radiology in the U.S. and EU.  
 
In developing this statement, we reviewed current ethics literature from computer science and 
medicine, as well as historical ethical scholarship, and material related to the ethics of future 
scenarios.  In the interest of efficiency, our statement focuses on North America and Europe. 
We realize that other regions may have values and ethics which both overlap and differ.  
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This statement is intended to be aspirational rather than prescriptive. We aim to provide an 
approach to the ethics of AI that is easy to understand and implement. We expect this topic will 
change rapidly as technology and data science advances, and new legal approaches and liability 
descriptions evolve to deal with automated decision making. California’s new data privacy 
law14, 15 and the European Union’s GDPR16 and proposed Civil Law Rules on Robotics17 are 
harbingers of such legislation. People who build commercial and generalizable radiology AI 
tools need instructive ethical guidance; this statement will help inform future groups charged 
with composing such regulations. This statement provides a baseline for recommendations and 
ethical questions to consider when planning to implement AI in radiology.  
 
Ethical use of AI in radiology must respect the ethical principles of humanity, the protection of 
human subjects of biomedical and behavioral research18, and mandates of public reason. Some 
of radiology’s ethical issues are deep and difficult; in those cases, we try to raise awareness of 
what we regard to be the most pressing ethical issues, explain how the issues specifically 
involve radiology, and suggest factors the radiology community should consider. Where we 
identify ethical issues that pertain specifically to radiology with answers that are sufficiently 
clear, we will suggest strategies. 
  
This statement is structured using a process described by Floridi et al.,4. Ethics topics are 
divided into ethics of data, ethics of algorithms, and ethics of practice.  

Ethics of Data  

The ethics of data are fundamental to AI in radiology. Key areas of data ethics include informed 
consent, privacy and data protection, bias and data “truthfulness,” ownership, objectivity, 
transparency, and the gap between those who have or lack the resources to use large datasets. 
Other data issues include bias against group-level subsets based on gender, ethnic, or economic 
groups, the importance of trust in assessing data ethics, and providing meaningful and moral 
access rights to data5.  
 
AI has dramatically altered our perception of radiology examinations and associated data 
including their value, how we use them and how they may be misused. In addition to   
understanding AI, radiologists have a duty to understand the data. Radiologists and the 
radiology community have a moral duty to use the data they collect to improve the common 
good, extract information about patients and their diseases, and improve the practice of 
radiology. Radiologists are ethically obligated to make their data useful to the patients it was  
collected from. 
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Clinical radiology data 

An imaging examination typically consists of image data and associated labels19.  
 
Image data are produced by a piece of imaging equipment, and subsequently processed to 
generate human-viewable and -interpretable images. The raw data produced by the imaging 
modality cannot be interpreted by humans, and must be converted into collections of pixels, 
which we commonly refer to as an image. Pixels are the “dots” that form the images that 
humans evaluate. While the pixel data are saved, and often combined with additional meta-
data, raw data is usually purged after several days. In some instances, such as with ultrasound 
images, meta-data (such as patient information) can be embedded within the pixel data. This is 
commonly referred to as “burned-in” metadata. While most image-based AI efforts currently 
use pixel data, there are efforts underway to process raw data, as it sometimes holds more 
information than pixel data7. 
 
Labels add further context, information, and value to image data. They can be study-level 
descriptors (e.g., this is an abdominal MRI) or image-level descriptors (e.g., on image 36, these 
pixels represent the liver). The radiology report that accompanies the images and indicates the 
findings, interpretation, and diagnosis that results from the images commonly serves as a 
source of labels. Labels can include:   
 

● Radiology report findings, including Common Data Elements (CDEs)20 
● Image annotations, such as arrows, measurements, and regions of interest on 

the images 
● Extra labeling done specifically for data to be used for AI 
● Non-image clinical data, including documentation from the electronic health 

record (EHR), pathology, laboratory, genomics, and other data 
● Social media and other publicly available data, such as weather data and public 

maps 
● Other data generated by patients, the public and the Internet of Things (IoT) 

 
The performance of an image-based AI system depends on the diversity of the pixel data and 
the precision and accuracy of the labels. The radiology community can increase the quality of AI 
systems through standardization of annotations and measurements; traceability; data version 
control; documenting processes that alter, move, or store data; and correlation to patient 
outcomes and related meta-data19. 
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Business operational and analytic data 

Business operational data include data on customer transactions, employee tasks, resource 
utilization, and business processes. Information technology (IT) operational data include 
information on what, and how well, technology components are operating. Business/IT analytic 
data include data about speed and accuracy of IT processes, security and risk of the business-
technological ecosystem, and measures of data integrity, validation, correlation, business 
efficiency, and productivity. Report turnaround time, relative value units (RVUs), scanner 
utilization, and quality measures are common examples of these data in clinical radiology. 

Pre-training, synthetic, and augmented data 

The performance of AI models improves as they are trained on more data. Excitement about 
the accuracy of AI models for perceptive tasks outside of medical imaging came from using 
datasets of millions or even tens of millions of images. By contrast, currently available radiology 
datasets for AI contain between hundreds to tens of thousands of radiology examinations. 
Thus, algorithms that drive radiology AI models are either typically pre-trained on large sets of 
non-medical image data, such as ImageNet (which has over 14 million labeled images of typical 
objects such as dogs, cars, and mountains), or use synthetic or augmented data21, 22. The 
process of applying models trained on one type of data to a different type of data is called 
transfer learning. 
  
One approach to expand data for training is to use fully or partially artificial data, commonly 
referred to as synthetic data. Synthetic data are generated at least in part by statistical 
programs to randomize their features. Once the model to produce them is developed, 
generating synthetic data is fast and inexpensive. Synthetic data are useful for pre-training23. 
Risk of potential compromise of patient data with them is minimized, since the data are not 
obtained from real patients. For radiology, synthetic data can mimic rare diseases, allowing the 
algorithms to train on more exams showing the pathology when such exams are hard to obtain 
from patients. They are also useful for researchers, when no data exist, or to generate data to 
test and verify AI products.  
 
Synthetic data are often used as adversarial images in adversarial networks (GANs), a class of AI 
algorithms24. While these images appear to simulate pathology precisely and can increase the 
overall accuracy of the trained model, there is little research or understanding of their effect on 
real-life settings. Synthesized models of pathology may perpetuate imperfect understanding of 
pathology and may be inaccurate. Also, because AI models can potentially pick up subtle 
features, synthesized images can introduce artifacts imperceptible to humans that may affect 
AI model training in ways we may not be able to appreciate. Until more is known about effects 
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of using synthetic data for training, anyone and any vendor using GAN-generated images for 
data augmentation needs to disclose their use.  
 
Augmented image data are real data that are copied, with each copy altered in some way to 
make it different25. Common augmentations include rotation, flipping, translation, resizing, 
adding noise, or sharpening. Augmented data are useful when the algorithm to be trained can 
identify the object despite such changes. Often, augmented data are easier to generate than 
synthetic data, though augmented data may still have privacy and data use restrictions. Data 
augmentation techniques and use require caution. What appears to be a benign method of 
rotating images can have unintended negative consequences if not thought out carefully. For 
example, a patient with pneumoperitoneum on an upright radiograph, if rotated, can give false 
data to the training process because a decubitus radiograph of pneumoperitoneum appears 
quite different than an upright image turned 90 degrees. Details of any data augmentation used 
during algorithm training should be made available to users. 
 
Synthetic and augmented data help fill in gaps in real data and are useful to improve reporting 
and selection biases. They may also exaggerate bias26 however, if they duplicate or reinforce a 
systemic bias in the baseline data used to generate them.  While these data are useful to train 
algorithms, much more research is needed to understand the ramifications and limits of using 
large amounts of artificial data in radiology and the criteria for their use.  

Raw image data 

Raw data are usually proprietary to companies that build imaging equipment, such as CT 
scanners. They are largely uninterpretable by humans. When digital radiology first appeared, 
digital data storage was expensive. As such, only data in forms thought to be clinically useful 
were saved, and the raw data was rarely saved for more than a short period after images were 
acquired and interpreted. Theoretically, AI can find features in raw data more robustly than 
from data that have been processed into human-interpretable images. Because of this, the 
radiology community is increasingly recognizing the value of raw data. Patients, industry, and 
researchers will benefit if raw image data are saved and made accessible in addition to 
traditional, post-processed image data19.  

Data ownership 

Health care entities collect and protect patients’ medical images and associated health 
information. Now, with robust methods to share data electronically and the need to aggregate 
data for AI, medical imaging data are increasingly being shared among radiologists, other health 
care workers, institutions, and even countries. Ethical and technical issues to secure data are 
complicated, especially as ethical norms and laws vary among countries. This complexity and 
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variation hinder sharing of patient data for clinical care, AI research, and commercial 
development.  

On the surface, “Who owns patient data?” is a concept that radiologists, the greater medical 
community, and regulatory bodies have already addressed. Data ownership varies among 
countries. In the U.S., the entity that performs the imaging becomes the owner, though 
patients have a legal right to a copy of the imaging data. While practices are heterogeneous, 
many hospitals include permission to use data retrospectively for research in their general 
consent to treatment, which has been shown to be accepted by patients27.  In the U.S., federal 
law does not require consent for de-identified retrospective studies as defined in the following 
excerpt from 45 CFR 46 (2018 version) 

(ii) Information, which may include information about biospecimens, is recorded by the 
investigator in such a manner that the identity of the human subjects cannot readily be 
ascertained directly or through identifiers linked to the subjects, the investigator does 
not contact the subjects, and the investigator will not re-identify subjects18 

By comparison, in the EU, the General Data Protection Regulation (GDPR) specifically states that 
patients own and control their sensitive, personal, and/or identifiable data (both medical and 
non-medical). The GDPR requires explicit patient consent to reuse or share data, and patients 
may withdraw their consent at any time16.  Each EU country has a national body responsible for 
protecting personal data28. A new EU-based initiative is actively asking patients to donate their 
data after undergoing an imaging exam and securing a diagnosis29.  Sites where radiology 
examinations are performed are also subject to ownership and copyright regulation, suggesting 
that approval to use radiology data will require approval by both patients and imaging facilities. 

In Canada, similar to the U.S., health care providers that produce medical images own the 
physical record, and patients have a right to access it [30]. Health care delivery is under 
provincial rather than federal jurisdiction, and varies between Canadian provinces31, 32. The 
recent Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans33 states 
that “consent is not required for research that relies exclusively on secondary use of non-
identifiable information,” a position held by Canada's largest research agencies.   
 
While legal discussions on data privacy and ownership are outside the purview of this 
statement, they illustrate the need for new discussions on who owns what data; and if data are 
transferred, used and reused, who pays whom for what. In other words, might the owner of the 
imaging machine own the pixel data, while the radiologists own the labels they generate, 
including reports, annotations, or other information they contribute to the value of an exam? 
Until recently, most medical image data sharing and aggregation was for research purposes, 
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and governed by mature policies. As medical image data become commercially traded entities,  
if the their value comes from having both pixels and labels and that bundle is significantly more 
valuable than either part separately, who receives that value is yet to be determined.  

Data sharing and data use 

From search engines to word processors to digital assistants, the dislocation of data value has 
disrupted the business model. Traditional products are built less to provide services and rather 
as portals to collect, capitalize on, and profit from data. This paradigm has the potential to 
occur in medicine and radiology.  
 
As medical data become more valuable, the line between academic and commercial uses of 
data is blurring. For example, suppose a hospital sells exclusive rights to their imaging data to a 
company hoping to build an AI product. Since patients also retain the right to access their data, 
may they, in turn, sell their data to another company that wants to build an AI product? Or may 
they refuse to share their data for commercial development but allow it for non-profit 
research? Many governmental and other funding sources now require applicants to share their 
data, so how will this be reconciled with exclusive data use agreements? Legislators and 
regulators need to revisit the policies that concern the use of medical data in academic and 
commercial settings, finding an equitable balance between the interests of society at large and 
the interests of the individual patients who generate the data34.  
 
The skyrocketing value of radiology data is disrupting traditional data-sharing practices, and 
buying and selling of radiology data is becoming more common. The data are most valuable to 
those who can best monetize it, and there is reason to suspect that the people who are best 
able to monetize data will be those who are least morally scrupulous. Current examples of 
questionable data use in social media and other settings reinforce this suspicion. A model of 
self-governance, by those who own the data, is unwise. So long as radiology data are held 
privately, we will need regulators with the power to ensure that the outputs of those who own 
the data — not just algorithms and clinical products — properly take into account the 
associated moral risks.   
 
New deals for commerce in medical data may be influenced by naiveté or greed. For example, 
in 2015, the Royal Free National Health Service (NHS) Foundation Trust signed an agreement 
with DeepMind Health, giving the company access to 1.6 million personal identifiable records at 
no charge. It was suggested later that the NHS was “seduced by the magic of the algorithm 
company and in future should at least seek more control over the data and their transparency. 
What [the NHS] did not realize is that they were the ones with the really important thing, which 
is the dataset.”35 In general, people don't conceptualize their data as being valuable, and 
undervalue it. A necessary condition on consent is being informed. A patient can be taken to 
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have consented to let others use their data only if  they have been informed of how valuable 
those data are in monetary terms.  
 
Increasingly, companies anxious to obtain data are attempting to contract with people outside 
radiology, including administrators, and clinicians and researchers in other specialties. For 
example, they might approach a pulmonary or surgical research group to obtain images to 
develop products for those fields. Sometimes these contracts are discovered by the radiology 
department only in retrospect, and the contracts include access to data in perpetuity or for 
exclusive use. Thus education on ethical access to data, including radiology images, as well as 
internal regulations and enterprise policy for data access, should be promptly established and 
publicized to the entire medical enterprise.  
 
Social media demonstrates that substantial data value comes from its use in surveillance to 
build a deep and unfeeling profile of each person. Medical data is extremely valuable in this 
paradigm. Today we use robust “free” tools for internet search, email, document management, 
and social media image sharing in exchange for giving our data to companies that do with it 
whatever makes them money. Using this same business model, companies could potentially 
provide excellent “free” radiology AI tools, where the cost to use them is giving our medical 
data to them to use as they please. For example, one company today offers a free tool which 
enables people with little programming ability to build AI models36. 
 
Open, freely accessible radiology data offer benefits for the greater good of patients, society, 
and the economy. Several U.S. universities recently publicly released moderate to large 
datasets37, 38. During the 2018 annual meeting of the French Radiological Society (SFR), the 
foundation of an AI ecosystem (DRIM France IA) was announced. The idea is to build a qualified 
database of more than 100 million medical images within a period of 5 years, which can be 
used by companies willing to develop AI tools that will be made freely available to France’s 
hospitals and radiologists. At the least, countries should develop a consensus regarding what 
sorts of data sharing is legitimate, and develop guidelines on how data producers, owners, 
managers, and users may share data safely and equitably. Despite such efforts, it may be naive 
to expect most data owners to give away valuable resources for free. 
 
Release of information and data use agreements (DUA) are critical tools to ensure that data are 
used transparently and ethically. DUAs explicitly specify what the involved parties can and 
cannot do with a dataset, and how they must dispose of the data once the agreement ends. 
This is complicated, however, by the need for version control of data used to train, test, and 
validate algorithms. Should those data be saved and appropriately documented for the life of 
the algorithm, or possibly for some period related to the effect on a patient of any decision the 
AI product made? If the data are used for continued learning and downstream algorithm 
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descendants of the original or parent source, should the data be version controlled for that 
lifetime as well? 
 
DUAs must be updated regularly to reflect new uses of patient data. Data may be considered 
entities unto themselves. Data flexibility influences their value. The more they can be 
repurposed, combined, and shared, the more valuable they become. As these changes occur, 
each data state should be documented. DUAs may include limitations on certain instances of 
reuse to avoid breaches of privacy and biases in training algorithms. Subsequent DUAs need to 
include version control specifications, particularly when data are used to train, test or validate 
AI models. They will include new and more comprehensive rules for data reuse and intellectual 
property. The entities receiving the data should take responsibility to identify the origins of 
those data and fully understand the permissions and rules attached to them. It has been 
suggested that each patient sign a DUA with any third-party entity that contributes to their 
digital health record, to encode data quality, security and use for all contributors and users39. 
Another approach is dynamic consent, an electronic process which allows ongoing 
communication between researchers and research participants40. 
 
We specifically note DUAs that include exclusive use of data as unethical, because such 
agreements may remove a significant amount of useful radiology data from general use. They 
can exacerbate concentration of power and erode transparency. We should strive to make 
radiology data widely accessible, both legally and financially. This means that we should curtail 
exclusive data access contracts and that we should try to ensure that datasets — even those 
that have had substantial work done to increase their value, such as linking, cleaning, and de-
identifying, or being coupled with high-value labels — are capable of being accessed by entities 
with lesser financial resources. 
 
Institutional review board (IRB) requirements also need to reflect new uses for patient data. 
Some IRBs, particularly outside the U.S., waive consent requirements when they are not 
feasible or impede validation of a research study or AI model. When might patient privacy and 
consent not be absolute, and patient’s interests be overridden, when risks are low and there is 
a compelling public interest to use the data for the greater good41?  If this occurs, patients 
should be made aware. 
 
The need for a robust technical infrastructure to share and manage medical data is driving new 
supporting technology. Federated learning is an approach gaining wide favor, where a 
supervised learning algorithm is delivered to a health care institution which allows the data to 
stay inside the institution’s firewall42. This is probably the best way for an imaging site to 
control its own data. This approach requires each individual health care institution to have its 
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own algorithm-hosting infrastructure, and to prepare and label their data in a manner that the 
algorithm can accept.  
 
Blockchain models theoretically provide a strong, comprehensive method for individuals and 
entities to securely aggregate and easily access medical data across disparate sites43, 44. Details 
and issues of this technology are outside the scope of this Statement. 
 
In the interest of full transparency and trust, it would be beneficial to provide a framework to 
recognize the value of patient data and provide guidelines for different use cases. What must 
radiology do to gain patients’ trust that their data are being used appropriately? How should 
radiology help patients understand if they have any claim on the monetary or other value of 
their data? Claims on monetary value are based more on legal precedent than ethics, and vary 
by country. Most patients are willing to have their data shared45, and presumably trust it will be 
used appropriately. The purpose of data sharing, such as for research versus commercial 
product development, changes patients’ willingness to share data46. This may not hold in the 
future, however, if breaches in research data compromise patient privacy or as patients realize 
the monetary value of their data47.  This is a complex setting. Suppose a patient withdraws 
consent upon learning a research project in which they participated is now being 
commercialized. However, the FDA submission has already been completed, so now should the 
model be retrained without this patient's data? This will necessitate a new submission to the 
FDA under current guidelines. Thus, organizations may need to be more forthcoming with the 
possibility of commercial product development from research activities in the informed consent 
process. 
 
Increasingly, individual patient data are being collected outside of formal health care settings. 
Patients and the public may be invited to share29, 48, or even sell, their radiology examinations. 
Today there is no consensus on consent agreements or contracting rules for how these data 
may be used and reused, nor are there requirements to notify patients how their data are being 
used, or by whom or for patients to notify anyone about selling their data outside of health care 
settings. It may be possible for a patient to sell the same data to multiple parties, and thus 
contaminate test and validation datasets, or adversely introduce bias in training. 
 
Patients have large amounts of easily identifiable data outside of radiology. These include other 
medical data from their health record, pathology and genomics, data from mobile phones and 
personal health and exercise tracking devices, internet search history, socioeconomic data, 
location tracking, video cameras, and environmental data such as weather records. These data, 
many of which are publicly available, can theoretically be aggregated to provide broad and 
deep “360-degree” views of patients. These integrated data may enable more accurate 
diagnosis and treatment options for individuals, but they are nearly impossible to de-identify 
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and carry significant privacy risks. This is even easier when a patient has a rare or unusual 
disease. 
 
Patients seldom know where their data go. An important way to establish trust is through 
transparency. Making patients fully aware of an entity’s data practices, and ensuring that they 
can learn about, participate in, and in some cases even dictate the collection and use of their 
data, builds customer confidence and has the added benefit of greater brand loyalty. Doing this 
will also require the entity to understand its goals for sharing or reusing data. Some of this 
relies on context. If patients find their data used in a context where they do not expect to find 
it, the patient’s surprise can quickly change to mistrust.   

Data privacy  

The right to privacy has been defined as the right “to be let alone,” and to be free of 
surveillance by other people or entities49. In this setting, only authorized individuals should 
have access to patient data. All reasonable efforts should be made to preserve this privacy, 
particularly as data are reused and move through chains of ownership and responsibility. 
 
In the U.S., the Health Insurance Portability and Accountability Act (HIPAA) defines strict privacy 
policies for patient identifiers considered protected health information (PHI). Because of this, 
data often are de-identified or anonymized, which obscures or removes identifiers from health 
information before being used for research or commerce50. Medical images pose unique de-
identification issues. For example, images of the head and neck can be reconstructed into 3D 
models of patients that can be fed into facial recognition software51. Radiographs may 
incidentally include identifying information on bracelets or necklaces, or serial numbers on 
implanted devices such as pacemakers or defibrillators52. Ultrasounds may have identifying 
information burned into the image pixels. Radiology images also include extensive metadata, 
some of which identify the patient. Private DICOM tags, used in a proprietary fashion by 
vendors and therefore frequently undocumented, may unexpectedly hold information that 
identifies patients, institutions, or a patient’s disease.  
 
When one uses these data to extract features and train AI algorithms, the model may train on 
these data, and then may not work when those data are unavailable in other settings. De-
identification of radiology examinations requires additional steps beyond deletion and 
replacement of the content of DICOM tags, and may necessitate manual review of images by 
humans. Some academic centers in the U.S. prohibit public sharing of data until two individuals 
have manually reviewed and cleared each item to be shared. 
 
Despite de-identifying radiology exams and other medical data by rigorous traditional means, 
these practices are not absolute. Using a 360-degree approach described previously, entities 
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with expertise in manipulating massive data can likely re-identify just about any radiology 
exam53. It is technically feasible for a large social media company to gather data from 
smartphones and personal devices, along with online search history, and purchase and match 
these with health care data. They could then advertise to those individuals, or sell those data to 
insurance companies, hospitals, nursing homes and others. Radiology groups might find those 
data valuable to identify patients who need future imaging. This sort of all-encompassing 
information access further underlines the need for, and importance of, data security. Bad 
actors with access to medical data could extort patients about aspects of their medical history 
that they wish to remain private.  
 
Ethical practitioners will make data as private and secure as possible, while also being 
transparent that medical data may not ever be absolutely private. Perfect anonymization is 
challenging at best.  
 
Data used to train algorithms presents another new setting for data exposure. Commonly used 
deep-learning approaches often incorporate details about the training data. The algorithm’s 
behavior may inadvertently disclose these elements [54]. More nefariously, algorithms can be 
intentionally designed to leak sensitive data, a process known as intentionally back-dooring55. 
Thus, AI deployments may need additional precautions in addition to  normal institutional 
software acquisition security policies. 

Bias and data  

Bias is a systematic deviation from the truth. Bias caused by data occurs when the sampled data 
do not represent the truth. This is complicated because different settings may have their own 
truth, such as “truth” about one demographic group may not accurately represent truth of a 
different group, or in a different setting. Types of bias most common in radiology AI include 
reporting, selection, and automation. Automation bias will be discussed in the Ethics of Practice 
section.  
 
Reporting bias is when the reported, or presented, data do not completely represent the real 
world because data are selectively disclosed. In medicine, this may come from clinical data 
being more available for positive research findings, or from those same data being duplicated 
or over reported. On the other hand, data from negative studies are often under-reported. It 
also occurs when prototypical data are assumed, for example, describing bananas without 
noting their color as yellow, because it is assumed bananas are yellow unless otherwise 
noted56.  
 
Selection bias or sampling bias occurs when the sample does not represent the population 
accurately57. Often this is a result of using available or interesting data. Using data from one 
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institution to train an AI model, for example, may accurately represent the population of that 
institution, but not the more general population for which the model is intended. It may 
inadvertently discriminate against underrepresented subsets of the population58. 
 
Selection bias may occur overtly or inadvertently. For example, if all the images for a radiology 
AI algorithm on a particular disease come from a cohort based on a set of features different 
from what represents the entire population on which the algorithm will be used, it may 
systematically give the incorrect answer for individuals who do not match the training group’s 
features. Depending on the question to be answered, relevant features range from physical and 
health characteristics such as age, sex, sexual orientation, weight, height, race, and genetic and 
medical history to economic, ethnic, and educational features. Because AI often utilizes larger 
amounts of data and extracts features at a more granular level than humans, it is often difficult 
to know in advance which features of a training group may bias or otherwise result in a 
clinically unethical AI model. 
 
Dataset shift (DS), a subset of selection bias, is a significant barrier to widespread AI use today. 
DS exists in most radiology settings because image data used for training do not accurately 
reproduce the conditions of future imaging studies. This includes bias introduced by 
experimental design, such as the use of synthetic or augmented data. In other words, previous 
exposure to training is inadequate for the model to make accurate predictions in new 
situations59. While radiologists commonly notice and adapt to differences in images due to slice 
thickness, scanner brand, field strength, gradient strength, or contrast timing without affecting 
image interpretation, AI generally lacks that ability. For example, if an AI agent is trained only 
on images from a 3 Tesla MRI, it may or may not generate the same results on examinations 
performed at 1.5 Tesla. Similar situations exist for each of the parameters above. One approach 
to mitigate DS is to have comprehensive training, validation, and test sets representing every 
type of image data acquisition and reconstruction60, 61. A second solution is to develop 
mathematical processes to recognize, normalize, and transform data to minimize DS.  
 
In countries with few radiologists, applying AI trained on datasets from wealthy countries 
represents unique DS risks. For example, could an open source chest X-ray algorithm developed 
in Southern California produce harm during a SARS outbreak in rural Asia or Ebola outbreak in 
Africa? 
 
Some types of dataset bias occur commonly enough that algorithms can distinguish between 
different datasets. Manually selected data fundamentally include more bias than data chosen 
randomly or automatically. Curation bias may occur when humans can choose from which 
angles to take images, which commonly occurs in ultrasound. Negative set bias arises when 
datasets over-represent positive or otherwise interesting examinations. This is particularly 
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complex for radiology, where the vast majority of exams are normal. One then needs to balance 
collecting enough examples of pathology without aberrantly biasing the algorithm. When 
synthetic or augmented data are used to generate enough examples of rare pathology, they 
may inappropriately bias the dataset. 
 
Radiology data are often unbalanced, meaning they have many cases of some categories, 
particularly normal examinations, and few cases of pathology. In unbalanced datasets, 
categories may be undersampled or oversampled to improve model performance or runtime. 
This may introduce bias. 
 
Bias is sometimes thought of as ethically neutral, as a tendency to produce differential 
outcomes. In this scenario, bias could be beneficial. If health systems currently deliver subpar 
care to certain subpopulations disproportionately, there may be an opportunity to rectify that 
inequity using AI tools that prioritize good health outcomes for all patients or subpopulations. 
We believe, however, that it is best to think of bias as a negative thing, and the ethical 
approach in radiology AI is to minimize bias.  

Data labeling and ground truth 

AI models in clinical radiology today use supervised ML, where the model learns to match given 
labels to given images well enough that when the model sees new images, it accurately predicts 
what label to match to the new images. This is most useful when labels match ground truth, 
which is the truth about the state of the patient and the patient’s pathology or lack thereof.   
 
Defining ground truth in medical imaging is problematic. For example, an AI model could be 
trained to recognize a fracture of the scaphoid bone in the wrist. The ground truth labels to 
train the AI model may come from a radiologist labeling the images as yes or no for fracture. 
Some fractures are too subtle to see on the initial examination, or the fracture might be visible 
but missed by the radiologist. For the clinical setting of a question of fracture of the scaphoid (a 
small but significant bone in the wrist), if the initial X-ray is read as normal and the patient still 
has pain two weeks later, the exam is repeated to look for a fracture which may have been 
occult initially but typically easier to detect on the later exam. Would the initial report be 
accepted as ground truth, or in this case would ground truth include a check to see if repeat X-
rays were done later, and what they showed? In other words, what clinical outcome is most 
important? For some radiology examinations, the ground truth label will come not from a 
radiology report, but rather from a combination of subsequent imaging, physical exam findings, 
surgical outcomes, pathology results, genetic analysis, and other clinical data.  
 
Not only will a radiologist fail to label 100 percent of examinations correctly, they may label 
exams differently the next day, or from another radiologist. Ground truth using qualitative 



24 

scoring by a single expert may be confounded due to this intra- and inter-observer variability. 
Interpretation by more than one radiologist improves label accuracy62. If three radiologists 
were to evaluate each examination, one could formulate ground truth from their majority or 
consensus interpretation; in practice, this is prohibitively expensive.   
 
Alternatively, semi-quantitative scoring systems can be developed to determine an imaging 
ground truth, with rigorous rules set out in scoring atlases and with assessments performed by 
multiple readers. Formal techniques to evaluate image-based scoring systems such as these 
include the OMERACT Filter63. An AI system might be deemed successful if it performs at least 
as well as other human expert readers at one of these scoring tasks. For the scaphoid fracture, 
a semi-quantitative grading system might assign a score based on features such as cortical 
interruption, presence of lucent line, change in bone density, and how the other wrist bones 
are aligned.    
 
This illustrates the multiple challenges in defining the ground truth labeled data to train AI 
algorithms. What should it be based on, and who should determine that? To avoid deep-seated 
biases, the answers will depend on the specific task, and need to be carefully considered and 
defined a priori.   
 
An ethical approach suggests one should weigh the need for improved ground truth labels 
against the feasibility and cost, and provide transparency about how ground truth is 
determined for each dataset. This suggests that radiology and medicine would be well-served 
by standards for discovery and reporting of dataset bias. The radiology community should ask 
questions about their data, and be transparent about the data evaluation process and the 
answers to these questions. This is particularly important when using publicly available datasets 
for training, as researchers may be unaware of assumptions or hidden bias within the data.  
 
When an AI model is implemented, those responsible should be able to answer these 
questions, and other similar questions, about the Ethics of Data: 
 

● How will we document and notify patients about how data are used, both by us and 
others? 

● How do we document data used to train an algorithm, including descriptors for features 
traditionally associated with bias and discrimination.  

● How and by whom are labels generated? What bias might arise from the processes 
used? 

● What kinds of bias may exist in the data used to train and test algorithms? 
● What have we done to evaluate how our data are biased, and how it may affect our 

model? 
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● What are the possible risks that might arise from biases in our data, what steps have we 
taken to mitigate these biases, and how should users take remaining biases into 
account? 

● Is our method of ground truth labeling appropriate to the clinical use case we are trying 
to resolve? 

Ethics of Algorithms and Trained Models 
At its core, AI employs classification systems to come to a result. The first and perhaps simplest 
approach to AI is formal logic: “If an otherwise healthy patient has a fever, then they may have 
an infection.” A second approach is probabilistic, or Bayesian, inference: “If the patient has a 
fever, adjust the probability they have an infection to X%.” A third approach generalizes from 
similarities to make new predictions: “After analyzing the records of patients whose 
temperature, symptoms, age, and other factors mostly match the current patient, X% of those 
patients had an infection.” A fourth approach, neural networks, mirrors the function of a 
neuron): “If enough signs and symptoms match a specific pattern of previously labeled data 
within a model, then classify as diagnosis X.”  
 

Machines making decisions  
 
Decision-making is the selection of a belief or a course of action among multiple alternatives. 
The decision may trigger an action. Human decision-making is the process of choosing 
alternatives based on the person’s knowledge, values, preferences, and beliefs. AI agents 
choose alternatives based on features in the input data. For supervised learning, the algorithm 
chooses that alternative based on prior training to match data features to labels. It is within the 
labels where human values, preferences, and beliefs may be transferred to the model. This is 
where human bias may manifest.  
 
While AI performs well with classification tasks, it is a machine, not a human, and does not 
calculate fairness or equality12. Fair is not an AI concept. Responsibility for these concepts falls 
to humans, who must anticipate how rapidly changing AI models may perform incorrectly or be 
misused, and to protect against these possible outcomes, ideally before they occur64. 
 
AI models consist of the algorithm and the data on which they were trained. To reconstruct 
algorithm development and testing requires saving, or having the ability to reconstitute, exact 
versions of the datasets used. In theory, AI models can be built to change continuously based 
on learning from new data. Current AI models are trained on a carefully crafted dataset, and 
then halted while used clinically. If the model is responsible for a high-risk decision, it is unclear 
if incremental benefits from continuous training will outweigh the risk of unintended 
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performance declines. This version control process of freezing and documenting each working 
version of a model is standard practice, but until now such rigor has not applied to data 
associated with producing an AI model. Similarly, other common software quality control 
policies and best practices for ethical software management may now apply to data. This is a 
critical issue, as it will be almost impossible to find root cause and provide corrective action for 
performance failures without knowledge of exact data used. This has important implications for 
both federated learning and transfer learning, not only due to issues of data accounting, but 
also because the regulatory framework may prohibit postmarket model improvements or 
model training on private data. 
 
Radiology should start to prepare for the following type of scenario. Suppose Hospital A decides 
to purchase an FDA-cleared lung cancer AI model from vendor ABC that has a very high 
published accuracy. However, when installed, Hospital A obtains much less accuracy using its 
own data, and wishes to retrain using those data after purchasing the model. Should Hospital A 
be allowed to do this? Should the vendor allow it? Should the vendor have the option not to 
allow retraining? Is the vendor liable for this modified AI model or does this void any warranty? 
Suppose the vendor allows sites to retrain on their own data. Thus, multiple hospitals might 
then have unique versions of the software. Is each hospital responsible for their own version 
control? What happens when the vendor releases a new version? We may need a mechanism 
with standard infrastructure and documentation methods to maintain version control not only 
of the vendor’s parent product but of all descendant models, whether from the vendor or those 
modified locally. 
 
For the foreseeable future, radiology AI will be based on well-curated datasets and code 
freezes. AI is theoretically best when allowed to learn continuously. At some point in the future 
as we gain more experience with how AI models fail, and how to monitor them, new processes 
and regulations will arise which enable continuous learning. 

Algorithm selection  
The first steps of developing any AI solution are: understanding the training data, defining 
model assumptions, and critically evaluating for bias. Choosing an algorithm depends on the 
size, quality, and nature of the data, available computational time, and the task to be 
performed. Some algorithms work better with smaller sample sets, while others require 
numerous examples. For image recognition purposes, convolutional neural networks (CNN) 
have shown some of the most promising results. Developers select algorithm structures (e.g., 
linear vs. non-linear) based on assumptions or analysis of the training data. Ethical issues, 
beyond understanding which algorithm type best suits the situation, include consideration of 
what algorithm might give the most useful output for patient care, balanced against limited 
computing resources or the amount and type of training data available.  
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The objective of a model can also introduce bias. When selecting trained models, radiologists 
should consider possible unintended consequences, and evaluate the fairness of the model’s 
performance across the real-world data of multiple patient groups. This is best done by 
ensuring that data the model will analyze in practice matches the training and test data used to 
validate the model’s performance. This process is like applying evidence-based medicine 
principles when considering the results of a diagnostic test or choosing a treatment. 
  
Due to lack of adequate personnel to develop and train AI algorithms and increasing algorithm 
complexity, a new field of automated ML algorithms is developing. These allow domain experts 
with limited technical computer science skills, such as practicing radiologists, to build and train 
AI. While this has potential to improve democratization of AI, unskilled trainers may be 
unaware of complexity and potential pitfalls of AI models. As radiologists become increasingly 
responsible for creating and supervising AI, they should learn enough to understand not only 
how to optimize algorithms, but also the ways in which those algorithms may be unethical, 
biased, or otherwise not work as intended. This topic requires complex mathematics and 
statistics which in general is outside of radiologists’ knowledge. They should acknowledge this 
and involve appropriate experts. 
  
This review is largely focused on image analysis with neural networks and deep learning. Many 
other types of machine learning algorithms are available, which may be appropriate in different 
situations, and entirely new classes of algorithms are being developed. Some of those may soon 
displace deep learning for image analysis. 

Algorithm training 

Once an algorithm has been trained on a dataset, it is known as an ML model. This step by itself 
may introduce bias, as the algorithm inherits decisions made from data selection and 
preparation. To minimize bias (particularly dataset shift) and maximize benefits for patients, it 
is critically important to train models with datasets that truly represent data the model will see 
when it is installed in multiple disparate radiology practices. Often this requires training across 
multiple institutions and diverse datasets. One helpful approach is the previously described 
Federated learning method to share models between institutions, including their weights and 
parameters. This may be a good option since models are not governed by patient privacy 
regulations and data can remain inside an enterprise’s firewall.   

Model evaluation and testing  
Once the model is trained, it is tested with different data to see how well it works, and 
potentially how it handles atypical input data or data that it would not be expected to process 
well. Model testing includes selecting the right test data, defining metrics to evaluate model 
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results, and determining who performs testing. Model evaluation may include both a validation 
phase and a testing phase. During validation, data different from the training set are repeatedly 
shown to the model and it is refined. However, the eventual testing phase should present a 
third, separate dataset to which the model has not been previously exposed, and it is the 
model’s performance on this dataset that should be reported. 
 
For any supervised technique, the choice of ground truth against which the AI model is to be 
evaluated must be selected, potentially including imaging features and/or outcomes as 
discussed above in Ethics of Data. Even after ground truth has been selected, ethical difficulties 
arise. For example, when faced with clinical situations where there is a high level of uncertainty, 
humans tend to err on the side of caution, evidenced in a study in which it was difficult to 
separate benign and malignant skin lesions, with doctors over-diagnosed malignancy65.  
 
During the testing process, data should be checked to ensure it matches the deployment 
context. It may be necessary to perform baseline statistics on the training and testing data to 
understand disease distribution. The confusion matrix defined as (TN + TP + FP + FN) is 
commonly used for binary classification problems (Figure 1). 
 

  Prediction 

  Yes No 

Truth Yes TP FN 

No FP TN 

 
 
Figure 1. Confusion matrix showing the instances in a predicted class versus instances in the 
actual class. From this table, it is easy to see how often classes are mislabeled. TP=true 
positives, TN=true negatives, FP=false positives, and FN=false negatives.  
 
For thorough testing, different classes/groups should be assessed to model performance. For 
example, there should be a confusion matrix for the general population, one for females, 
another for males, and so on — to ensure that any gender bias shows. The testing dataset for 
the model should have demographic parity, where every test subject has an equal chance of 
being selected. It should also have predictive parity, where subjects’ predictions have an equal 
chance of a positive predictive value truly belonging to the positive class66. In practice, it may be 
difficult to get a balance of all four components of a confusion matrix. Hence, other elements of 
the confusion matrix, like the false positive and false negative rate balance, should be 



29 

considered. New metrics like equalized odds allow model testing to satisfy the false positive 
and false negative rates. 
 
Radiologists faced with a diagnostic dilemma commonly understand the cost of under- and 
over-diagnosis, and weigh these factors in their decision-making. For instance, a radiologist 
reading a chest radiograph with equivocal findings for abdominal free-air will sacrifice 
specificity due to the clinical consequences of missing pneumoperitoneum. While impacts such 
as adverse events or social factors are not easy to model or assess, ethical algorithm creators 
should strive to measure algorithm performance in true application beyond simple accuracy. 
Often this will require more sophisticated statistical analysis than the typical area under the 
curve (AUC) calculations derived from the TP, TN, FP and FN. 
 
In light of the known legal, privacy, financial and other resource challenges of access to data, 
developers may opt for the minimum model training required for FDA certification. The 
relationship between a legally certified model and a model that functions robustly, correctly, 
and ethically in the wild is still to be defined. It may well be that, at least to start, legal 
certification may not equate to a radiology AI model being safe or clinically useful. 
 
Beyond technical testing and validation, models will need clinical validation. How do they work 
in production, on real, new, patients? In general, models provide discrete predictions, while 
patients are distributed across a continuum. Models will need to show they are clinically useful 
and clinically ethical when confronted with real people the model has not seen previously. 

Transparency, interpretability, and explainability 

Transparency, interpretability, and explainability are necessary to build patient and provider 
trust. When errors happen, we investigate the root cause and design systems to eliminate the 
potential for similar errors in the future. Similarly, if an algorithm fails or contributes to an 
adverse clinical event, one needs to be able to understand why it produced the result that it 
did, and how it reached a decision.  
 
Some types of AI commonly used in radiology, such as artificial neural networks, are “black 
boxes,” and historically it has been problematic to understand why they make specific 
decisions. This black box approach is problematic for patient care, where decisions potentially 
have high consequences. It must be acknowledged that the workings of the human mind also 
represent a “black box”, to some extent. Nonetheless, a human radiologist will usually be able 
to explain a line of thought that led to a conclusion. A similar level of traceability is also 
necessary to ensure confidence in AI-based decisions. It is always important to note that an AI 
product is not human; it is a computer program envisioned, built, and monitored by humans.  
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Interpretability is the ability to understand the workings of an AI model. Explainability is the 
ability to explain, in terms that a person understands, what happened when the model made a 
decision. Explainability includes understanding why a model made a particular decision, or 
appreciating conditions where the model succeeds and where it fails. Explainability includes 
both comprehending technical aspects of algorithm structure and how outputs are presented 
to the user [67]. In complex networked systems of AI models, users may be other AI models 
further downstream in a cascade of decision-making machines. Explainable AI (XAI) has been 
recognized as a core area of research, with funding opportunities from agencies such as the 
Defense Advanced Research Projects Agency (DARPA68.  
 
For a model to be transparent, it should be both visible and comprehensible to outside viewers. 
How transparent a model should be is debatable. Transparency might make it more susceptible 
to malicious attacks, or reveal proprietary intellectual property. Furthermore, imposing a wide 
definition of transparency could jeopardize privacy by revealing personal data hidden in 
underlying data sets. In general terms, the more transparent AI is required to be, the less 
complex it can be. This may impose limits on its performance69.  
 
Even if we can “look under the hood,” the ML process often is extremely complex, with up to 
billions of parameters and complex mathematical operations. Pinpointing a causative bug in 
such a system is a daunting task70. A more practical approach may be to advocate for 
visualization and explainability. 
 
The GDPR states that automated decision-making systems that have significant impact on a 
person are not permitted without that person’s consent16, 71. It also states that the individual 
has the right to an explanation of how the automated decision was arrived at, and the 
consequence of that decision72. This has been interpreted to mean that AI decisions should be 
able to be rationalized in human-understandable terms73. However, this “right to explanation” 
is, of necessity, limited. The European Council Data Protection Working Party interprets this as 
conferring a right to the envisaged consequences of a process, rather than an explanation of a 
particular decision74. 
 
The radiology community should create guidelines for explaining as well as assessing AI models. 
These guidelines will need to consider the variety of clinical applications. For example, AI built 
into an MRI scanner to decrease scanning times will have different impacts on patients, and 
potentially different technical pitfalls, than image analysis algorithms. Considering the GDPR 
definition, is decreasing scan time a decision that has a “significant impact” requiring patient 
consent? Does every image analysis AI decision have a significant impact?  
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It is unclear how much of an AI solution's inner workings radiologists have a duty to assess 
before applying the AI in patient care, and just how transparent AI vendors should be regarding 
the inner workings of their product. May a vendor supply a canned explanation of what its AI 
models do, or does each radiologist need intimate knowledge of the model and the ability to 
explain it clearly to the patient? What represents an adequate explanation? 
 
In many instances, where AI is used to augment medical decision-making, and a human 
physician has final authority, there will be no legal requirement to explicitly inform patients of 
the use of AI in their care. Conversely, where AI represents the principal point of contact 
between a patient and health care (e.g. AI tools directly offering advice, or triaging patients for 
care), patients should be clearly made aware they are dealing with an AI tool69.  

Open source software 

To verify published research on radiology AI requires access to the algorithms discussed. This 
open source software (OSS) approach has been used for other fields and software. OSS has its 
own ethical issues, outside the scope of this statement. This includes resource consolidation, 
potentially biased and exclusionary groups producing it, and internally code-focused 
approaches75, 76. Strengths of the OSS approach include transparency, access to code, and 
potentially more robust and secure code.  

Replicability 

AI models should be replicable; the model should give the same or better result if given the 
same input. While this seems obvious, it is in contrast to humans, who commonly exhibit both 
inter- and intra-observer variability. The standard for an ML model should at a minimum match 
expert human performance. Replicability is problem-dependent, and the amount of variability 
depends on the specific task at hand.  

Algorithm bias 

Computer-assisted decisions are dependent on the quality and accuracy of the data upon which 
they are derived. As described in detail above, any bias in the data will have an impact on the 
outcome, much the same way that humans can only base decisions on their own previous 
learning. 
 
Implementing ethics of AI within medical imaging is dependent on the continuous verification 
of both the data and models. Deployed models will need to be monitored and re-tuned if a 
source of bias or new information are identified. There is an opportunity to invite diverse 
stakeholders to audit the models for bias. Mechanisms should be put in place to monitor user 
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reports and user complaints. Before model deployment, training data should be matched with 
deployment data. The metrics for performance should be thoroughly tested and used to inform 
real-life performance. 

Security 

Adversarial attacks are well-known in other AI domains, and the radiology AI community is 
becoming aware of them77–80. Currently, radiology as a field has no defense against such 
attacks. While potential solutions may exist, this weakness must be acknowledged and 
addressed. It will become increasingly important for AI models to be incorruptible and robust 
against malicious manipulations and attacks. 
 
When an AI model is implemented, those responsible for any part of its lifecycle should be able 
to answer these and other similar questions, about the Ethics of Algorithms: 
 

● Are we able to explain how our AI makes predictions?  
● How do we protect against malicious attacks on AI tools and/or data? 
● How do we create sustainable version control for AI data, algorithms, models and 

vended products? 
● How will we minimize the risk of patient harm from malicious attacks and privacy 

breaches? 
● How will we evaluate trained models before clinical application, for clinical 

effectiveness, ethical behavior, and security? 
● How will we monitor AI models in clinical workflow to ensure they perform as predicted 

and that performance doesn’t degrade over time? 

Ethics of Practice 
Radiology AI is a complex ecosystem of clinical care, technological and mathematical advances, 
business and economics. Moral behavior, doing the right thing, can be intellectually uncertain. 
We see daily how technical innovation crosses into unprincipled activities, and even if 
unintentional may cause considerable harm to patients, society, and our own reputations. 
Conscientious ethical values should guide decisions about where to apply AI, define metrics to 
describe appropriate and responsible AI, and recognize and alert the community to unethical 
AI. 
 
At minimum, how do we evaluate and ensure that data obtained from patients and others is 
used in ways that benefit those from whom it is acquired? Do the data accurately reflect the 
appropriate cohort? Is the result of the AI fair? Does the result discriminate or harm anyone, 
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and if so, how and to whom is that made known? Do we share our technical insights with 
regulators, and inculcate ethical compliance into our practice and regulations? Are we able to 
explain how our AI makes predictions?  
 
Radiology AI will exist in a much larger AI ecosystem. Changes to radiology may well change 
how a hospital is run, how hospitals are designed and built, and relationships between 
radiologists and patients, other physicians, administrators, IT staff, insurers and regulators. AI 
induced changes to the hospital and health care operations will also impact how radiology 
department and radiologists work. Radiologists with informatics expertise will be in high 
demand , and play key roles in radiology and hospital hierarchies. Ethical training must be 
prominent in the informatics radiologist’s toolkit.  
 
Many of the decisions that will be made about radiology AI will be made by others in business 
computer technology. Those people live in entirely different worlds from medical doctors. 
Business people are in the business of making money. Tech people are in the business of 
making machines better, faster, and easier to sell. Neither group are in the business of making 
patients better. For ethical radiology AI to succeed it must consider these goals.   

Computer - human interaction: Keeping humans in the loop 

The Institute of Electrical, and Electronics Engineers (IEEE) recently stated that autonomous and 
intelligent systems “should always be subordinate to human judgement and control,”12 which in 
the radiology context will ultimately fall to radiologists. This is certainly one way to approach AI, 
though it fails to acknowledge the potential ability and significant benefits of autonomous AI 
tools. 
  
The doctor-patient relationship is predicated on trust. As medicine increases in complexity, 
trust extends from individual providers to larger health care institutions. As health care 
institutions and individual practitioners implement AI, maintaining transparency will be 
important to maintain trust6. 
 
It is ethical to be transparent with patients and all stakeholders when a decision is made by, or 
heavily influenced by, an algorithm. This raises intriguing issues about how to have a shared 
decision-making discussion with patients when AI is another party in decision-making.  
  
Radiologists and institutions using AI in radiology should be transparent with patients about 
what is happening to them and their data. Patients should be made aware of: 
 

● The ways in which humans oversee the decisions made by AI 
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● How AI is being used in diagnoses and medical recommendations, and what controls the 
institution has put in place to assess, validate, and monitor the AI tools being used.  

  
Ethical oversight must extend beyond the end users of AI tools. Those responsible for 
developing, adapting and maintaining AI tools must also adhere to ethical principles12. Specifics 
of ethical behavior for those developing and maintaining AI tools may be different from those 
utilizing or implementing the tools. Equally, those whose interests are more-focused on 
economic gains from AI implementation such as practice managers and payers must be 
included in the ethical considerations and decision-making. Health care providers are already 
advertising perceived benefits of AI as a means of attracting patients. AI systems could very 
easily be programmed to guide users to clinical actions designed to meet quality metric 
requirements, or to increase profit, without necessarily conferring any benefit on patients. As 
complex dynamic networked systems evolve, it may be difficult to attribute responsibility 
among different AI agents, let alone between machines and humans81. Furthermore, the ethical 
principles required by those developing, adapting and maintaining AI tools may differ from the 
principles of those using or implementing the AI tools. Constant dialogue will be required 
between developers and users to ensure that both groups adhere to common standards of 
ethical behavior, and understand any differences that exist. 
 
Many companies working in the area of AI have established ethics boards and adopted ethics 
charters. This is to be welcomed. It is vital that these bodies and their activities represent 
sincere efforts to maintain high ethical standards, and not “ethics washing”, designed as a 
strategy to avoid external regulation. In some instances, questions have been raised by outside 
observers about the transparency of these groups regarding their membership, 
recommendations and influence on commercial activity and decision-making82. Such ethical 
bodies should be truly independent of commercial influence to ensure trustworthiness. 
 
How should oversight be maintained? Certainly there must be committees, boards, or working 
groups tasked with scrutinizing the introduction of AI, its clinical use, and outcomes from that 
use. The composition of these bodies should, to the extent possible, include all stakeholders 
involved in or impacted by the use of AI, especially including patient representatives. Individual 
radiologists, through continued medical education to improve their understanding of AI, can 
contribute by actively monitoring model performance as they use AI in their daily clinical 
practice. A mechanism to gather, compile, and disseminate information on the limitations, 
pitfalls, or failures of each AI model can help ensure transparency and continued quality 
assurance and improvement.  
 
Tasks or decisions that should not be delegated to models need to be identified to ensure 
human oversight and prevent potential harm to patients. Whether these oversight bodies need 
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formal legislation to mandate and maintain them will be a matter for each jurisdiction. It may 
be sufficient for the authority of these bodies to rest within professional organizations, 
hospitals or academic health care structures (once these institutions are trusted by their staff, 
their patients, and the public). The legal question of treating autonomous AI agents differently 
from those under direct human supervision is under consideration, and yet to be decided83. 

Education 

Rather than AI replacing radiologists, technologists, and other roles in radiology, new and 
different skills will be needed to practice AI-enabled radiology. This offers a unique opportunity 
to reassess the essential components of radiological work and determine the optimal 
combination of humans and AI to perform these tasks. Radiology needs research and specific 
guidance on training and protocols for both radiologists and patients for new, shared decision-
making paradigms. Part of this training will need to focus on the practical question of how best 
to use the new AI tools that will be made available. But part of this training will need to focus 
on the ethical matters that arise by virtue of employing new AI tools. Beyond the details of 
ensuring ethical collection and use of data, and ethical development of algorithms (both of 
which processes will be driven and controlled by relatively small numbers of individuals), there 
are responsibilities to apply the algorithms in practical day-to-day patient care in an ethical 
fashion. These fall to every physician whose practice uses AI tools. The best way to ensure that 
AI tools are used ethically is to make the physicians who use them daily aware of the moral risks 
they face when using these tools. The better trained radiologists are, the fewer cases of 
wrongdoing there will be, blameless or otherwise. 

Automation bias 
Automation bias is the tendency for humans to favor machine-generated decisions, ignoring 
contrary data or conflicting human decisions. The literature contains several examples of 
automation bias that occur when humans monitor or observe decision-making machines 
particularly in highly complex situations [84]. Automation bias leads to misuse of decision-
making machines, including over-reliance, lack of monitoring, and blind agreement85. 
Automation bias in clinical decision support systems has been well reviewed86. 
 
Automation bias leads to errors of omission and commission. Omission errors occur when a 
human fails to notice, or disregards, the failure of the AI tool. High decision flow rates, where 
decisions are swiftly made on radiology exams and the radiologist is reading examinations 
rapidly, predispose to omission errors. This is compounded by AI decisions made based on 
features that are too subtle for humans to detect. Commission errors occur when the 
radiologist erroneously accepts or implements a machine’s decision in spite of other evidence 
to the contrary.  



36 

 
Radiology confronted automation bias years ago with the original use of computer-aided 
detection (CAD) algorithms in the interpretation of screening mammography. A few studies 
suggested that the original algorithm had reduced interpretation accuracy87 and decreased 
sensitivity in a subset of radiologists88. It was theorized that reduced accuracy may have been 
related to over-reliance on CAD outputs. While today’s AI-based CAD algorithms show much 
greater promise than traditional CAD in experimental settings, it is not clear how human-AI 
interactions will impact accuracy or efficacy in actual clinical settings. This will be partially 
addressed through validation processes like FDA approval, which will include evaluation of 
safety and efficacy. An element of “soft governance” is also useful; AI (or other products) are 
unlikely to be widely purchased if they cannot show compliance with accepted standards 
(whether required by legislation or not)89. 
 
There is a risk that resource poor populations may be harmed to a greater extent by 
automation bias because there is no local radiologist to veto the results. AI developers 
ultimately need to be held to the same "do no harm" standard as physicians. They should be 
held accountable, on grounds of negligence, for the unacceptably bad medical outcomes that 
foreseeably result from the use of their products.  

Patient preferences 

A poll in 2017 reported that 65% of American adults feel uncomfortable delegating the task of 
making of a medical diagnosis to a computer with AI90. Research is needed to understand when 
and how patients will, and if they should, trust radiology decisions made by machines. 
 
While radiology should consider the collective wishes of patients with respect to the use of AI 
tools in their care, these wishes may not conform to the logic that drives AI models. For 
example, studies about decision-making in autonomous vehicles (AVs) showed that people 
approve of utilitarian AVs which would sacrifice their passengers for the greater good if faced 
with a choice of running over pedestrians or sacrificing their occupants, and they would like 
others to buy them. On the other hand, they themselves preferred to travel in AVs that protect 
their passengers at all costs91. Adding complexity, recent research indicates that norms 
surrounding AI are culturally variable across the world92, suggesting that a one-size-fits-all 
approach will often be impossible. 
 
Similar ambivalence in public attitudes towards radiology AI is likely. Will the public accept 
imperfections in AI-driven radiology as it relates to individuals, in favor of a potential greater 
good? Or will an individual deciding for themselves or their loved ones have a much lower 
tolerance for such imperfections? If, for example, medical imaging is purely protocol-driven and 
algorithm-interpreted, will there still be room for the practice of common sense, and for 
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balancing individual and population risks related to radiation exposure against specific patient 
expectations? If AI-driven radiology is acknowledged to be imperfect and rapidly evolving, will 
the public accept it because it is less-costly or less-labor intensive than human-provided 
radiology? 

Traceability 

Traceability is the ability to link things, and to follow the link. It is a crucial factor to ensure 
patients’ and health care providers’ trust in these systems. Traceability helps to detect products 
that do not function as expected, and to assess quality control and implement corrective 
actions.  
 
The concept applies to multiple parts of software engineering. In radiology AI, a required 
diagnosis field in a radiology report, such as presence or absence of disease X, could be linked 
to an AI model that generates that categorization. Once this link is established, one can trace 
the relationship to verify the categorization has occurred. Similarly, the categorization can be 
traced back to the AI model that generated it. Traceability in software testing is the ability to 
trace tests forward and backward, usually using controlled test cases, or running the AI model 
in a controlled environment to see if it meets specifications. Traceability matrices document 
relationships among these requirements. 

AI and workforce disruption 
One of the greatest fears about AI is that humans will lose their jobs because of it89. 
Radiologists are not immune to this possibility, nor to the fear arising from it. This could lead to 
behaviors and practices in the future designed to ensure the continuing relevance and roles of 
human practitioners in health care, regardless of whether or not continued direct human 
involvement is of ultimate benefit to the public. 
 
 Much of the current debate about ethical issues surrounding the use of AI in health care 
centers around the presumption that one of the key roles of humans in AI implementation is to 
prevent negative consequences from its utilization. It would be perverse to ignore the 
possibility that humans may not act disinterestedly, and that radiologists have a vested interest 
in ensuring they are not made entirely redundant by emerging technology and artificial 
intelligence. Furthermore, in a potential future where radiologists’ position in the hierarchy is 
threatened or diminished in favor of information scientists or other nontraditional medical 
players, they may feel driven to protect their relevance. Not only is there an ethical imperative 
to protect patients and the general public from the dangers of “robot-only radiology,” there is 
also a countervailing need for protection against a radiologist or other physician self-interest if 
it conflicts with the general good.   
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We simply don’t know how patients will interact with robust radiology AI. Parts of it may be 
widely embraced, and other parts may generate fear and significant pushback. One described 
behavior is labeled ‘liberal eugenics,’ where a subset of the population with special knowledge 
or access to resources may use them to gain some sort of advantage. For example, they might 
take advantage of an expensive radiology screening AI tool93.   
 
Much media attention has been paid in recent years to statements suggesting that radiologists 
will become redundant in a new age of AI interpretation. This has led to fear among many 
medical students and young doctors that future careers might not be available to them in 
radiology, resulting in decreasing applications for places on radiology training programs. As 
understanding grows about likely AI influences on radiological practice, it seems more probable 
that we may suffer from the consequences of a future shortage of radiologists arising from this 
fear. This could paradoxically force accelerated implementation of AI solutions due to a reduced 
available human workforce, regardless of whether this confers population benefit or not. 

Resource inequality 

AI requires access to large amounts of data, the technology and skills to manage those data, 
and computer power to train and manage complex AI systems. Smaller or resource-poor 
hospitals and academic departments may lack these capabilities. Almost certainly some 
radiology AI will be proprietary, developed by large academic or private health care entities, 
insurance companies, or large companies with data science expertise but little historical 
radiology domain knowledge. This may exacerbate disparities in research capacity and services 
offered.  
 
While financial incentives must be made available to model developers to foster continued 
research and development, thought must be given to the well-being of resource-poor 
communities. Affordable access to models proven to improve individual and population health 
outcomes may be attainable through government or private funding. In addition, radiologists 
and other users of models should be cognizant of potential biases towards resource-poor 
communities due to underrepresentation of certain populations or communities during the 
training and testing processes. Awareness of these biases can promote recognition of issues as 
they arise during the implementation and utilization of these models. To these ends, the 
advisory groups of organizations and institutions in charge of monitoring model performance 
should be composed of people of diverse backgrounds and expertise to ensure adequate 
representation. Although there is no universally-agreed upon definition of “fairness,” it seems a 
reasonable position to suggest that health care AI tools should make every effort to offer a 
sufficient degree of equal opportunity and access for all served by the health care system 
within which it will be deployed, including minority groups69. For example, an algorithm that is 



39 

very accurate when given very high quality images and not quite as good when used on lower 
quality images might still be considered ethical, even if unequal. On the other hand, for 
example, a TB screening algorithm designed for developed world might work poorly in 
developing countries, or locations with high HIV rates where the inflammatory response to TB 
causes different features. Using it in that setting might do more harm than good. 

Liability 
One offshoot of this issue is whether or not AI should be liable for its actions, and if so, how? 
This is primarily a legal question, though ethics and morality affect the outcome. For the 
moment, humans will bear ultimate responsibility and liability81. 
 
In considering ethics of using AI models in medical practice, one must also consider the 
liabilities when poor patient outcomes occur. Currently, physicians, including radiologists, are 
held liable in cases where “standard of care” are not provided. In the new era of AI-assisted 
care, the “standard of care” is still to be determined.   In cases where AI is used as a decision 
aid, it is likely that radiologists will still be considered liable, though it is probable that litigation 
will also accuse AI product manufacturers. However, as models incorporate large amounts of 
data, some of which are not human-perceptible, the question will arise as to whether 
physicians should still be held wholly responsible for bad outcomes or whether responsibility 
should be shifted partly or wholly to those who produce, market, and sell models. If, for 
example, low-dose CT images are manipulated by an algorithm to improve image quality, and 
this processing alters a subtle but important feature the point of not being visible, the liability 
should surely reside more with the software developer than with the physician using the tool. 
Engineers, programmers and the company they work in are potentially liable if the outcome 
over a large amount of data does not demonstrate a similar ROC and specificity. On the other 
side, as AI extends into technically sophisticated practice, might radiologists be found guilty for 
not having used it? 
 
Transparency for AI in radiology should have a means to evaluate whether some culpable 
defect in the model has contributed to poor patient outcomes.  Should the hospital or health 
care system that implements such models be liable?  In addition, what happens when the poor 
patient outcome is a result of a radiologist using his or her own best judgment against the 
output of an AI model? Today, a question of a radiologist’s liability relates to one of negligence: 
Did the physician behave reasonably under the circumstances? With an autonomous machine 
and no human at the controls, will the focus be on whether the computer performed as well as 
it should have17, 83? Furthermore, it is conceivable that a radiologist could be considered liable 
for a poor outcome if she failed to make use of an available AI tool in the diagnostic process.  
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The legal issues surrounding AI implementation will be complex, and remain somewhat 
unpredictable. For example, if AI software is not embedded in any device, but resides in an 
application, it may be argued that it represents a service, rather than a product, and is 
therefore not subject to product liability legislation. In the EU, medical devices fall under the 
Product Liability Directive. The new EU Medical Devices Regulation states that “software in its 
own right, when specifically intended by the manufacturer to be used for one or more of the 
medical purposes set out in the definition of a medical device, qualifies as a medical device,” 
and would therefore fall under product liability legislation69, 94. A different issue is whether 
courts may take the view in the future that failure to use an available AI tool in medical care 
may constitute negligence69. With respect to these complex legal issues, much remains to be 
decided, by practice and case law. 

Conflicts of interest  

Conflict of interest (COI) is “a set of circumstances that creates a risk that professional 
judgment or actions regarding a primary interest will be unduly influenced by a secondary 
interest.”95, 96 With nascent, evolving markets like those involving radiology AI, it is expected 
and quite normal that radiologists involved in patient care would also sometimes hold positions 
in AI startups or more established commercial entities positioning themselves to compete for 
position in health care. Similar to when an investigator evaluating a new drug has a financial 
interest in its success, radiologists or administrators who have COIs related to AI products may 
be managed through remedies such as public disclosure, institutional oversight, divestment, or 
other measures.  
 
In some cases, the title or position of a physician, nurse, or administrator in a health care 
system may effectively render their COI as an institutional COI. Addressing this, the American 
Association of Medical Colleges states that an individual’s “official’s position may convey an 
authority that is so pervasive or a responsibility for research programs or administration that is 
so direct that a conflict between the individual’s financial interests and the institution’s human 
subjects research should…be considered an institutional conflict of interest.”97. With 
institutional conflicts of interest, institutions may need to be creative with additional 
independent oversight measures to prevent a loss of public confidence. 
 
Individuals or institutions with conflicts of interest in health care should be vigilant to disclose 
and manage those conflicts98, 99. When dealing with AI in health care, those in positions to 
facilitate disclosures of patient or subject data to third parties not pursuant to patient care, 
purchase AI agents, or implement models in clinical workflows should be especially careful to 
manage their conflicts, which may in some cases require them to recuse themselves from such 
activities. 
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As radiology incorporates autonomous and intelligent AI products into widespread, demanding 
clinical practice, those responsible should be able to answer these and other similar questions 
about the Ethics of this new Practice paradigm: 
 

● What are the patient and provider risks associated with this AI implementation, and 
what level of human oversight is necessary to mitigate these risks?   

● What education and skills are needed to decide whether to apply AI to our patients, and 
to safely and effectively use it when appropriate 

● How do we ensure that testing data accurately reflects the targeted clinical cohort? 
● What system/process should we implement to monitor the impact (outcomes, privacy, 

and unintended discrimination) of AI on our patients, and providers (automation bias)? 
● How do we continuously and actively monitor AI driven autonomous and intelligent 

tools to verify they are working as expected in clinical care? 
● What guardrails should we use to determine when, and more importantly when not, to 

implement autonomous or intelligent mechanical agents? 

Conclusion 
AI has the potential to improve radiology, help patients, and deliver cost-effective medical 
imaging. It amplifies complex ethical and societal questions for radiology. It will conceivably 
change every part of radiology to some degree. Most of these will be positive, but some may be 
for the worse. The goal should be to obtain as much value as possible from the ethical use of AI 
in radiology, yet resist the lure to obtain extra monetary gain from unethical uses of radiology 
data and AI. 
  
Everyone involved with radiology AI has a duty to understand it deeply, appreciate when and 
how hazards may manifest and be transparent about them, and to do all they can to mitigate 
any harm they might cause.  
  
AI has dramatically altered the perception of radiology data — their value, how to use them, 
and how they may be misused. Because AI allows us to obtain more or previously unknown 
information from images, radiologists have a duty to understand these new situations with 
their data. Radiologists and the radiology community have a moral duty to use the data we 
collect and the potential new insights that AI offers to improve the common good, extract more 
information about patients and their diseases, and improve the practice of radiology.  
  
For radiology, the value of data and of AI will be more situational than absolute. The radiology 
community has a duty to strengthen helpful systems and institutions to provide the appropriate 
circumstances for ethical AI to flourish in clinical care, research, population health, and 
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business. There will be options to make money from radiology data that are legal, but are still 
unethical and simply should not be done because they potentially harm patients or society.  
  
Radiology should start now to develop codes of ethics and practice for AI. These codes should 
promote any use which helps patients and the common good, and block use of radiology data 
and algorithms for financial gain without those two attributes. Establishing these regulations, 
standards, and codes of conduct to produce ethical AI means balancing the issues with 
appropriate moral concern. Ensuring ethical AI requires a desire to gain trust from all parties 
involved. Regulations, standards, and codes of conduct must be agreed upon and continually 
updated. We need both radiology-centric AI expertise and technology to verify and validate AI 
products. Paradoxically, some of this technology may contain AI. Key to these codes of conduct 
will be a continual emphasis for transparency, protection of patients, and vigorous control of 
data versions and uses. Continuous post implementation monitoring for unintended 
consequences and quality escapes with formal root cause and corrective action for these must 
be enforced. 
  
Radiologists are learning about ethical AI at the same time they invent and implement it. 
Technological changes in AI, and society’s response to them, are evolving at a speed and scope 
which are hard to grasp, let alone manage. Our understanding of ethical concerns and our 
appropriate response to them shift constantly. To do best by our patients and our communities, 
we have a moral obligation to consider the ethics of how we use and appreciate data, how we 
build and operate decision-making machines, and how we conduct ourselves as professionals. 
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Definitions 
 

● Artificial intelligence (AI) - The science and engineering of making computers behave in 
ways that, until recently, were thought to require human intelligence.  

● Machine learning (ML) - Algorithms whose performance changes, and ideally improves, 
as they are exposed to more data.  Though AI is the more common term, ML is more 
accurate for current techniques. 

● Supervised ML - A type of ML for which the algorithm changes based on data with 
known labels. In clinical radiology to evaluate medical images, supervised ML is a 
repetitive process to match images to existing labels.  

● Unsupervised ML - In unsupervised ML, the algorithm is fed an unlabeled dataset (i.e. 
one without answers). In this case the algorithm groups image findings into clusters 
based on one or more features it “learns”.  

● Deep learning - A type of ML that uses multiple layers of inputs and outputs.  
● Neural network - A subset of deep learning that has proved good at making predictions 

about images 
● Algorithm - Computer code that defines the actions that will be performed on input data 
● Model - The result of training an algorithm on a dataset. Each time the same algorithm 

is trained on a different dataset, or a different algorithm is trained with the same 
dataset, a new model results.  Once a model is trained, it runs much faster and requires 
much less compute power, as long as the input images are similar to the training 
dataset. 

● Bias - A systematic deviation from the truth.  
● Variance - A random deviation from the truth.  
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