Beta-Pix-dynamin 2 complex promotes colorectal cancer progression by facilitating membrane dynamics

Seula Keum¹, Soo Jung Yang³, Esther Park², TaeIn Kang², Jee-Hye Choi¹, Jangho Jeong¹, Ye Eun Hwang¹, Jung-Woong Kim¹, Dongeun Park², and Sangmyung Rhee^{1*}

¹Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea ²School of Life Sciences, Seoul National University, Seoul 08826, Republic of Korea ³Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, WA 98101

Seula Keum and Soo Jung Yang contributed equally to this work.

*Correspondence to:

Sangmyung Rhee, Ph.D.

Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea Tel: +82-2-820-5818; Fax: +82-2-825-5206; E-mail: sangmyung.rhee@cau.ac.kr

Supplementary Fig. S1

Supplementary Fig. S1 Positive correlation of βPix upregulation with CRC progression. a Profiles of βPix expression in different types of human cancer samples from Oncomine databases. Datasets were analyzed based on p < 0.0001, fold change >2, and gene rank = top 10%. b IHC analysis of βPix in normal and CRC tissues obtained from HPA databases. c Kaplan-Meier analysis of recurrence-free survival in patients with CRC (226 patients) showing a high expression of β Pix from the GEO datasets (GSE14333). d Heatmap showing differentially expressed BPix in cancer cell lines from nine cancer tissue samples of different origins. GSE32474 with all probe sets of BPix was used. e Wound healing assay of three CRC cell lines. Wound closure was calculated by quantifying the gap area at 0 h and 48 h. Data are displayed as the mean ± standard deviation (S.D.) from two independent experiments and analyzed using one-way ANOVA with Tukey's multiple comparisons. One-way ANOVA, $F_{2,3} = 164.5$. **f** Western blotting was used to verify the knockdown of β Pix in sh β Pix #1 and #2 cell lines compared to parental and shMock, which were generated with different shRNA oligos. GAPDH was used as the loading control. g Secreted-MMP activity of βPix -knockdown cell lines measured by incubating fluorogenic MMP substrate for 2 h. Data are normalized into parental and presented as mean \pm S.D. from two independent experiments. One-way ANOVA, F_{3.4} = 133.2. h Western blotting was used to verify the overexpression of Flag- β Pix in LoVo cells. GAPDH was used as the loading control. i Wound healing assay of Flag-BPix overexpressed LoVo cells under FBS condition. The percentage of wound closure was calculated by quantifying the gap area at 0 h and 48 h. Data are displayed as the mean \pm S.D. from two independent experiments and analyzed using Student's unpaired t-test. j The number of invasive cells from Flag-BPix overexpressed LoVo cells under FBS condition. Data are presented as the mean ± S.D. from three independent experiments. Statistical analysis was performed using Student's unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s. not significant; CRC, colorectal cancer; IHC, immunohistochemistry; GEO, Gene Expression Omnibus; MMP, matrix metalloproteinase.

Supplementary Fig. S2 β Pix-mediated membrane dynamics in CRC cell lines. a Inverted contrast images of shMock and sh β Pix #2 SW480 cells stained for vinculin under EGF stimulation for 10 min. Scale bar, 20 µm. b DIC kymograph of the membrane edges in shMock and sh β Pix #2 SW480 cells stimulated with EGF. Lined regions were used to generate the kymograph. c Immunofluorescence images of Flag- β Pix, cortactin, and nuclei exhibit membrane protrusions at the wound edges. Scale bar, 20 µm. Yellow (in control) and red (in Flag- β Pix) lines depict the length of membrane protrusions. The bar graph presents the length of membrane protrusions and the mean ± standard deviation (S.D.) from three independent experiments analyzed using Student's unpaired t-test. ****p < 0.0001. CRC, colorectal cancer; EGF, epidermal growth factor.

Supplementary Fig. S3 Dyn2 is required for regulation of membrane dynamics by β Pix. a β Pix and Dyn2 protein levels in β Pixsilenced SW480 cells using western blotting. GAPDH was used as the loading control. b Phase-contrast images of Dyn2 knockdown SW480 cell lines in the tumor sphere formation assay. The bar graph shows the percentages of tumor spheres >0.1 mm in diameter. Scale bar, 50 µm. Data are presented as the mean ± standard deviation (S.D.) from two independent experiments and analyzed using one-way ANOVA with Tukey's multiple comparisons. One-way ANOVA, $F_{3,4} = 77.02$. c Immunofluorescence images of cortactin, F-actin, and nuclei in shMock and shDyn2 #2 SW480 cells under EGF treatment. Scale bar, 20 µm. Bar graph depicts the percentage of cortactinpositive structures in shMock and shDyn2 #2 SW480 cells. d FA assembly (left) and disassembly (right) rate from shMock and shDyn2 #2 SW480 cells following EGF stimulation. Data are shown as the mean \pm S.D. from three independent experiments. One-way ANOVA, F_{3.36} = 18.85 and $F_{3,22}$ = 23.92. **e** The total number of FAs (left) and nascent FAs <1 mm² (right) in shMock and shDyn2 #2 SW480 cells within a 10- μ m region from the leading edge following EGF treatment (n = 30, each group). One-way ANOVA, F_{3,116} = 89.29 and F_{3,116} = 65.71. **f** Kymography analysis of the leading edges in Dyn2-silenced SW480 cells expressing LifeAct-RFP with GFP or βPix-GFP following EGF stimulation. Cells were monitored for 25 min at 1-min intervals and analyzed at lined regions for kymograph. Scale bar, 10 µm (time-lapse images) and 20 µm (kymographs). g Transwell assay of RFP-positive invasive cells in shMock and shDyn2 #1 transfected with the indicated vectors under FBS condition. The percentage of RFP⁺ cells was calculated by dividing the number of RFP⁺ cells in the lower chamber by total RFP⁺ cells. Data are presented as mean \pm S.D. from three independent experiments. One-way ANOVA, F_{2,6} = 19.77. **p < 0.01, ***p < 0.001, ***p < 0.0001, n.s. not significant; EGF, epidermal growth factor; FA, focal adhesion.

Supplementary Fig. S4

Supplementary Fig. S4 Increased membrane localization of β Pix-Dyn2 complex and cell invasion on restoring β Pix Y442 phosphorylation. a Immunofluorescence images of vinculin and F-actin in HEK293T cells incubated on poly L-lysine and fibronectincoated dishes for 15 min after 1 h in suspension. Scale bar, 20 µm. b Western blotting was used to verify β Pix Y442 phosphorylation by constitutively active Src using Flag- β Pix WT and Y442F mutant. HEK293T cells were transfected with indicated vectors and immunoprecipitated with anti-Flag antibodies, followed by immunoblotting of Flag and phospho-tyrosine (p-Tyr). c Immunofluorescence images of endogenous Dyn2 and Flag- β Pix Y442E in SW480 cells under EGF treatment for 10 min. Magnification indicates the enlarged images from the boxed regions. Scale bar, 20 µm (in all images). d Representative images in Transwell assay of β Pix-knockdown SW480 cells with overexpression of Flag- β Pix WT, Y442F, or Y442E under FBS condition. Western blotting in the left panel shows overexpressed β Pix. The number of invasive cells was calculated by counting the cells at the bottom of the chambers, and the data were analyzed using one-way ANOVA with Tukey's multiple comparisons. The results are presented as the mean ± standard deviation (S.D.) from two independent experiments. One-way ANOVA, F_{4, 5} = 19.16. *p < 0.05, **p < 0.01, n.s. not significant; EGF, epidermal growth factor.

Supplementary Fig. S5

Supplementary Fig. S5 Analysis of the correlation between β Pix and Dyn2 in patients with CRC. a Western blotting to examine the conjugation of IgG and anti- β Pix SH3 antibodies with AuNPs. Conjugated antibodies at AuNP were visualized with HRP-bound secondary antibodies by detecting heavy and light chains of antibodies. **b** Box plots of Dyn2 expression in CRC tissues compared with normal tissues from Oncomine databases. **c** Correlation plot between β Pix and Dyn2 obtained from TCGA datasets. The expression of genes is shown as a \log_2 value. *r* indicates Pearson's correlation coefficient, and the *p*-value is calculated from *r*. CRC, colorectal cancer; mAb, monoclonal mouse antibodies; HC, heavy chain of antibody; LC, light chain of antibody; TCGA, The Cancer Genome Atlas.

shRNA	Number of off-targets	Gene name	Identity† (%)	Fold change [‡] (Mean ± S.D.)	<i>p</i> -value [§]
sh <i>βPi</i> x#1	Off-target #1	PTCH2	73	1.385 ± 0.142	0.06203
	Off-target #2	TRADD	68	1.098 ± 0.034	0.05507
	Off-target #3	CPSF3	63	1.040 ± 0.043	0.62071
sh <i>βPix</i> #2	Off-target #1	AKAP6	84	1.013 ± 0.043	0.72165
	Off-target #2	FBXW2	78	0.687 ± 0.103	0.04954
	Off-target #3	SUV39H2	73	1.037 ± 0.034	0.26309
sh <i>βPix</i> #3	Off-target #1	CREG2	85	ND¶	-
	Off-target #2	NBAS	66	1.192 ± 0.091	0.09719
	Off-target #3	LIN7A	61	ND	-
sh <i>Dyn</i> 2 #1	Off-target #1	PPIL2	71	1.245 ± 0.013	0.00005
	Off-target #2	TBXAS1	66	ND	-
	Off-target #3	HOPX	66	ND	-
sh <i>Dyn</i> 2 #2	Off-target #1	USP28	66	1.135 ± 0.375	0.66109
	Off-target #2	ANKFN1	66	ND	-
	Off-target #3	MBD2	66	0.602 ± 0.1	0.02990

⁺ The percent identity describes the similarity of off-target genes to shRNA sequence.

[‡] Fold change represents the ratio of off-target genes in knockdown cells compared to shMock cells. Fold change shows the mean ± S.D. from two independent experiments.

[§] p-value was calculated by Student's unpaired t-test.

[¶] ND: not detected

Supplementary Table S2. The list of primers used for qPCR

Gene name		Primer sequence (5' - 3')		
	F	ATGACAGTGGAACTCTTTGGT		
PTCH2	R	ACTGTGAACTCAACGCCAA		
	F	GAAATCTGAAGTGCGGCTC		
TRADD	R	TGACCCTGGAACAGAAAAGT		
00050	F	CGTTTACAGCAAGAGGTTGG		
CPSF3	R	TCCAAGTTAAGGTTGGCAGT		
	F	CAATGCCACTACAAGCAACA		
ANAPO	R	TCCTGAGAGGAAGGACTTGA		
	F	TGGCCAATTGGGAGAGAAAT		
FBX WZ	R	GGTAGAGACCAAGTGCTGAA		
SU 1/20/12	F	AGCTGTGACCCAAATCTTCA		
50V39H2	R	TCAGCTCTTCTCCAGCATTT		
	F	GGTGGCTGATCTGATGAAGA		
CREGZ	R	TGAGCGTTAACTGGACACAT		
NDAS	F	TGAAGAGAACCGCTACTGTC		
NDAS	R	CTTTTCATAGGTGGCCAAGC		
	F	CTGCTATCAGTGAACGGAGT		
LINTA	R	GAACTTTTGGGGTGTATCGC		
2 ווסס	F	CCTACCTGGACAAGAAGCAT		
FFILZ	R	TCAGTTTTGGGGTCACTCTC		
TRYACI	F	CAGCTTTCAGATTCACACGG		
	R	CCTTTCAGGGTTGAAGGTCT		
	F	GGTGGAAATCCTGGAGTACA		
	R	GGGTCTCCTCCTCGGAAA		
115028	F	TCCCCTGCATTCACCTTATC		
03720	R	GTAGAAACTCCCCTAGGCAC		
	F	TAGACTGTCTTCCATCCCCA		
	R	TGGAGTCGTAGTCACTGTTG		
MBD2	F	TCAGACCCACAACGAATGAA		
IVIBUZ	R	CTCCTTGAAGACCTTTGGGT		