SYNTHESIS AND EVALUATION IN RATS OF HOMOLOGOUS SERIES OF [¹⁸F]-LABELED DOPAMINE D_{2/3} RECEPTOR AGONISTS BASED ON THE 2-AMINOMETHYLCHROMAN SCAFFOLD AS POTENTIAL PET TRACERS

SUPPLEMENTARY MATERIAL

Vladimir Shalgunov¹, Jan-Peter van Wieringen², Henk M. Janssen³, P. Michel Fransen³, Rudi A.J.O. Dierckx¹, Martin C. Michel⁴, Jan Booij², Philip H. Elsinga¹*

¹Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands
²Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
³SyMO-Chem BV, Eindhoven, The Netherlands
⁴Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
*Corresponding author:
Prof. Dr. Philip H. Elsinga
Department of Nuclear Medicine and Molecular Imaging
University Medical Center Groningen
Hanzeplein 1
9713 GZ Groningen, the Netherlands
phone: +31-50-361-32-47
fax: +31-50-361-16-87

email: p.h.elsinga@umcg.nl

LIST OF ABBREVIATIONS

- 1TCM one-tissue compartment model
- 2TCM two-tissue compartment model
- BP_{ND} binding potential non-displaceable (equilibrium concentration ratio of specifically

bound radioligand to non-displaceable radioligand in tissue)¹

- DMF N,N'-dimethylformamide
- ESI-MS electron-spray ionization mass-spectrometry
- GPCR G-protein coupled receptor
- GTP guanosinetriphospate
- HPLC high-pressure liquid chromatography
- LC liquid chromatography
- MS/MS tandem mass spectrometry
- PET positron emission tomography
- ROI region of interest
- SPECT single photon emission computed tomography
- SRTM simplified reference-tissue model
- SUV standardized uptake value (regional uptake relative to mean uptake across the body)
- TAC time-activity curve
- TLC thin-layer chromatography
- UV-VIS ultraviolet/visible

V_T – total distribution volume of a radioligand in the tissue (i.e. the sum of distribution

volumes of free, non-specifically and specifically bound radioligand)

SUPPLEMENTAL FIGURES

Supplemental Figure 1. Brain uptake (means±SD) of [¹⁸F]FBu-AMC13 in rat brain. A – time-activity curves (TACs) per region-of-interest

(ROI) in control (saline-treated) rats. B – cerebellar (CER) and striatal (STR) TACs of in saline-treated (SAL) and raclopride-treated (RAC) rats.

C-striatum-to-cerebellum uptake ratios in saline-treated and raclopride-treated rats.

Supplemental Figure 2. Representative TLC of radioactivity extracted from the brain of a rat injected with [¹⁸F]FEt-AMC13.

Peak 1 corresponds to radiometabolites remaining on the start. Peak 2 corresponds to intact [¹⁸F]FEt-AMC13. Eluent is ethylacetate/methanol/triethylamine 100/5/1.

Supplemental Figure 3. Representative striatal (A) and cerebellar (B) TACs of [¹⁸F]FEt-AMC13 for a control rat and the corresponding fits with 1TCM, 2TCM and SRTM models. 2TCM fits were better than 1TCM fits in 69 out of 70 (99%) cases, as assessed by Akaike's

information criterion (AIC). SRTM fits had lower AIC value than 2TCM fits in 44 out of 70 (63%) cases.

Supplemental Figure 4. Correlation of region-of-interest total distribution volumes (V_T) of [¹⁸F]FEt-AMC13 obtained by Logan analysis with V_T values obtained by analyses with 1TCM and 2TCM models. Linear regression lines along with their equations and r and p values and the unity line (x=y) are shown on the graphs.

Points represent fits for individual regions in individual animals (both control and raclopride-pre-treated). Data for striatum, hippocampus, thalamus, hypothalamus, cortex, brainstem, cerebellum, olfactory bulbs and pituitary are used.

Supplemental Figure 5. Mutual correlation of region-of-interest binding potential (BP_{ND}) values of [¹⁸F]FEt-AMC13 obtained from different models. A – correlation of 1TCM and 2TCM BP_{ND} values; B,C – correlation of Logan-derived values with 1TCM and 2TCM-derived data; D,E,F – correlation of SRTM-derived values 1TCM, 2TCM and Logan-derived data. Linear regression lines, along with their equations and r and p values are shown on the graphs.

Points represent fits for individual regions in individual animals (both control and raclopride-pre-treated). Data for the striatum, hippocampus, thalamus, hypothalamus, cortex and brainstem are given as white circles. Data for the olfactory bulbs and pituitary are given as black diamonds and black triangles, respectively. These data are not used for the building of the linear regression lines shown on the graphs. BP_{ND} values are calculated using the cerebellum as a reference region, therefore the data for the cerebellum are not presented. V_T -based BP_{ND} values are used in case of 2TCM.

Supplemental Figure 6. Ex vivo autoradiography images of [¹⁸F]FEt-AMC13 from control (left) and raclopride-treated (right) rats. Representative sagittal and coronal slices (top) and a profile section through the coronal slices showing absolute exposure values (bottom).

Supplemental Figure 7. Modified Lassen plots² for [¹⁸F]FEt-AMC13 built from 1TCM (A), 2TCM (B) and Logan (C) data. V_T^{SAL} –ROI distribution volume in the control group; V_T^{RAC} –ROI distribution volume in the raclopride-treated group. Assuming equal receptor occupancy by raclopride and equal non-displaceable volume of distribution (V_{ND}) of the tracer in all ROIs, the slope of the linear regression line represents the fraction of receptors occupied by raclopride, while the X-intersect represents V_{ND}.

Points show mean values, error bars show standard deviations. Data for striatum (always the rightmost topmost circle), hippocampus, thalamus, hypothalamus, cortex, brainstem and cerebellum (always the leftmost bottommost circle) are presented. Data for the olfactory bulbs and pituitary are given without error bars as, respectively, black diamonds and black triangles, and are not used for the building of the linear regression lines. Equations and r and p values of linear regression are shown on the graphs. Fits were performed disregarding the variability of the means.

SUPPLEMENTAL TABLES

Supplemental Table 1. Radio-HPLC and radio-TLC characterization data for [18F]AMC13

Compound	QC1 k'	QC2 k'	TLC R _f
[¹⁸ F]FEt-AMC13	12.3^{*}	2.1‡	0.40
[¹⁸ F]FPr-AMC13	12.9^{*}	4.0‡	0.46∥
[¹⁸ F]FBu-AMC13	12.9^{*}	5.9 [‡]	0.56
[¹⁸ F]FEt-AMC15	9.1†	7.1§	0.16
[¹⁸ F]FPr-AMC15	9.8^{\dagger}	9.5	0.22
[¹⁸ F]FBu-AMC15	12.2^{\dagger}	12.3§	0.501

and [¹⁸F]AMC15 homologues.

*Platinum C18 EPS 100A 5 um, 250x5 mm; acetonitrile/water/formic acid 55/45/0.1; 2

ml/min

[†]Platinum C18 EPS 100A 5 um, 250x5 mm; acetonitrile/10 mM NaH₂PO₄ pH7.0 70/30; 2

ml/min

[‡]Gracesmart5 µm, 250x5 mm;acetonitrile/10 mM H₃PO₄ 25/75, 2 ml/min

^sGracesmart5 μm, 250x5 mm;acetonitrile/10 mM NaH₂PO₄pH7.0 40/60, 2 ml/min

lethylacetate/methanol/triethylamine 100/5/1, silica plates

"ethylacetate/methanol/ammonia/triethylamine 100/5/5/1, silica plates

Supplemental Table 2. MS/MS transitions and LC retention times of [18F]AMC13 and

[¹⁸F]AMC15 homologues.

Compound	Precursor		Monitored transition	products ^a	retention
	calcd M / formula	m/z	calcd M / formula	$m\!/z\;M^{+}$	time,
		$[M+H]^+$			min
EEt AMC13	331.16	332 20	$153.07 \ C_9 H_{10} FO^+$	153.10	6.27
TEL-ANIC 15	$C_{19}H_{22}FNO_3$	552.20	107.05 C ₇ H ₇ O ⁺	107.10	0.27
$ED_{r} \wedge MC12$	345.17	246 20	$167.09\ C_{10}H_{12}FO^+$	167.10	7.07
FPI-AMC15	$C_{20}H_{24}FNO_3$	340.20	107.05 C ₇ H ₇ O ⁺	107.10	7.07
$ED_{12} \wedge MC12$	359.19	260.20	$181.10\ C_{11}H_{14}FO^+$	181.10	0 17
FBu-AMC13	$C_{21}H_{26}FNO_3$	300.20	107.05 C ₇ H ₇ O ⁺	107.10	8.17
FEt-AMC15	429.24 C ₂₄ H ₃₂ N ₃ O ₃ F	430.30	$206.12 \ C_{12} H_{16} NO_2{}^+$	206.20	4.62
FPr-AMC15	443.26 C ₂₅ H ₃₄ FN ₃ O ₃	444.30	$206.12 \ C_{12} H_{16} NO_2{}^+$	206.20	5.87
FBu-AMC15	457.27 C ₂₆ H ₃₆ FN ₃ O ₃	458.30	$206.12 \ C_{12} H_{16} NO_2{}^+$	206.20	6.11

^aPutative fragmentation reactions are as follows:

Q1

Q3

Tracer	[¹⁸ F]FE	-AMC13	[¹⁸ F]FBu	I-AMC13	[¹⁸ F]FEt	-AMC15
Treatment	SAL	RAC	SAL	RAC	SAL	RAC
Region	(n=4)	(n=4)	(n=3)	(n=3)	(n=3)	(n=3)
Whole blood	0.16±0.03	0.17±0.01	ND^*	ND	0.06±0.03	0.12±0.08
Blood cells [†]	0.07 ± 0.01	0.06 ± 0.01	ND	ND	0.05 ± 0.04	0.05 ± 0.04
Plasma [†]	0.22 ± 0.04	0.23±0.01	0.15 ± 0.02	0.16±0.03	0.14 ± 0.11	0.07 ± 0.02
Adipose tissue	0.30±0.42	0.09 ± 0.02	ND	ND	0.18 ± 0.09	$0.10{\pm}0.05$
Adrenal glands	0.84±0.29	0.59 ± 0.20	34.5±3.5	32.1±3.6	1.53 ± 0.58	1.73 ± 1.07
Bladder	1.00 ± 0.52	0.83 ± 0.64	0.43±0.16	0.59 ± 0.26	0.23 ± 0.05	0.69 ± 0.30
Bone	0.24±0.21	0.17±0.05	0.73 ± 0.47	0.77 ± 0.46	$0.14{\pm}0.03$	0.12 ± 0.08
Bone marrow	0.68 ± 0.38	2.00 ± 3.17	2.31±1.19	2.18±0.09	0.98 ± 0.36	0.91±0.53
Caecum	0.46 ± 0.29	0.63 ± 0.84	ND	ND	0.15 ± 0.10	0.91±1.10
Duodenum	1.15 ± 0.25	4.01±4.63	3.24 ± 1.2	2.70±1.37	1.92 ± 0.35	22.8±36.6
Heart	0.15 ± 0.04	0.16 ± 0.02	0.50 ± 0.25	0.36 ± 0.03	0.11 ± 0.04	0.15 ± 0.10
Kidney	0.64 ± 0.20	0.48 ± 0.07	3.24±0.69	2.36±0.54	0.40 ± 0.10	0.61 ± 0.51
Large intestine	0.57 ± 0.36	0.41±0.33	0.60 ± 0.13	0.46±0.19	0.15 ± 0.07	1.20 ± 1.48
Large intestine content	0.06 ± 0.03	0.09 ± 0.12	ND	ND	0.02 ± 0.01	0.06 ± 0.04
Liver	1.51 ± 0.14	1.43 ± 0.30	1.49 ± 0.15	1.99 ± 0.86	0.86 ± 0.23	1.47±1.56
Lung	1.67 ± 0.41	1.38 ± 0.20	4.85 ± 2.15	4.26±1.02	1.18 ± 0.16	1.19 ± 0.40
Muscle	0.17 ± 0.04	0.19 ± 0.05	0.33±0.13	0.27 ± 0.02	0.07 ± 0.04	0.15 ± 0.11
Pancreas	1.31 ± 0.31	1.47 ± 0.32	3.78 ± 0.41	3.54 ± 0.64	0.75 ± 0.27	0.92 ± 0.77
Prostate	0.62 ± 0.18	0.40 ± 0.26	0.95 ± 0.17	1.27 ± 0.40	0.38 ± 0.15	0.42 ± 0.10
Small intestine	3.15 ± 2.00	2.39±1.94	4.52 ± 5.94	3.21±3.67	0.18 ± 0.07	11.1 ± 18.4
Small intestine content	54.2±57.7	24.6±32.8	20.9±31.4	11.0±11.4	0.56 ± 0.24	60.5±104
Spleen	0.46 ± 0.05	0.52 ± 0.10	2.48 ± 1.27	2.14±0.20	1.52 ± 0.68	1.62 ± 1.15
Stomach	1.36±0.35	2.09±1.19	1.90 ± 0.26	2.19±0.67	1.79 ± 0.92	1.73 ± 0.75
Submandibular gland	0.36±0.12	0.28 ± 0.06	2.01±0.53	2.12±0.85	1.51±0.26	1.41 ± 0.34
Testes	0.40 ± 0.06	0.42 ± 0.10	ND	ND	0.04 ± 0.01	0.04 ± 0.01
Thymus	0.32 ± 0.06	0.30 ± 0.06	2.04 ± 0.27	1.54 ± 0.12	0.49 ± 0.09	0.43 ± 0.15
Urine	11.0±9.5	4.40 ± 3.88	0.63 ± 0.53	1.51±0.95	0.69 ± 0.33	2.32±3.35

Supplemental Table 3. Ex vivo uptake(SUV) of the evaluated tracers in the peripheral tissues of saline (SAL) and raclopride-pre-treated (RAC) rats.

Data are presented as means±SD * Not determined † Plasma and cell fractions were obtained from whole blood by short centrifugation (3500 g, 5

ROI	Rat		1TCM			2TCM					
		K ₁ (ml/g/min)	k ₂ (1/min)	AIC	K ₁ (ml/g/min)	k ₂ (1/min)	k ₃ (1/min)	k4 (1/min)	AIC		
	А	0.45 ± 0.03	0.05 ± 0.01	489	1.77 ± 0.62	4.95±3.00	1.34 ± 0.29	0.05 ± 0.01	449		
Striatum	В	0.49 ± 0.02	0.06 ± 0.01	472	0.63±0.14	0.48 ± 0.68	0.81±1.13	0.17 ± 0.07	471		
	С	0.47 ± 0.02	0.07 ± 0.004	456	0.98 ± 0.85	3.47±8.55	2.81±3.01	0.11 ± 0.08	454		
	D	0.51±0.02	0.07 ± 0.01	465	8.06±30.34	58.0±203.8	3.54±188.40	0.07 ± 263.98	433		
	А	0.41 ± 0.02	0.06 ± 0.01	483	2.21±1.25	8.56 ± 3.62	1.60 ± 2.24	0.05 ± 8.88	443		
Hinnocompus	В	0.51 ± 0.02	0.08 ± 0.01	466	0.71 ± 0.07	0.50 ± 0.23	0.50 ± 0.27	0.14 ± 0.03	449		
mppocampus	С	0.46 ± 0.01	0.08 ± 0.004	441	0.60 ± 0.12	0.57 ± 0.77	1.17 ± 1.34	0.24 ± 0.09	438		
	D	0.48 ± 0.02	0.08 ± 0.01	455	101±14615	1246±181990	5.49±4.23	0.07 ± 0.05	441		
	А	0.44 ± 0.02	0.06 ± 0.01	475	14.0±117.5	104 ± 848	3.05 ± 820.48	0.05 ± 961.03	452		
Thalamus	В	0.65 ± 0.03	$0.10{\pm}0.01$	473	0.88±0.12	0.58 ± 0.58	0.67±1.63	0.19±1.99	464		
	С	0.55 ± 0.02	0.09 ± 0.01	460	0.71±0.13	0.48 ± 0.97	0.76 ± 3.17	0.23±3.61	457		
	D	0.64 ± 0.03	0.11 ± 0.01	479	3.13±3.18	12.3±18.9	2.61±0.96	0.11±0.02	453		
	А	0.40 ± 0.03	0.06 ± 0.01	493	273*	1355*	1.65*	0.05*	459		
Hypothalamus	В	0.53 ± 0.03	0.09 ± 0.01	478	1.17 ± 0.88	3.45 ± 1.30	2.22 ± 6.73	0.13±14.19	472		
Trypoulaianius	С	0.50 ± 0.02	0.08 ± 0.01	460	0.64 ± 0.24	0.63 ± 1.60	1.37 ± 2.85	0.27 ± 0.20	462		
	D	0.59 ± 0.04	0.12 ± 0.02	489	680±116990	3105±534810	2.16 ± 0.48	0.09 ± 0.01	453		
	А	0.37 ± 0.02	0.06 ± 0.01	468	1.68 ± 0.46	7.83±1.43	1.84 ± 0.62	0.06 ± 4.47	401		
Cortex	В	0.47 ± 0.02	0.09 ± 0.01	450	0.66 ± 0.04	0.64 ± 0.21	0.72 ± 0.24	0.16±0.02	416		
Contex	С	0.41 ± 0.01	0.07 ± 0.002	417	0.43 ± 0.12	0.19±1.58	1.50 ± 19.49	1.00 ± 1.64	421		
	D	0.47 ± 0.02	0.09 ± 0.01	452	1.46 ± 0.45	6.65 ± 0.77	2.62 ± 1.18	0.11±6.33	403		
	А	0.63 ± 0.04	0.10 ± 0.02	501	2.03 ± 0.40	3.53 ± 1.32	1.05 ± 0.19	0.10 ± 0.01	451		
Brainstem	В	0.60 ± 0.03	0.11 ± 0.01	475	0.96 ± 0.11	0.89 ± 0.30	0.72 ± 0.83	0.15 ± 1.20	449		
Dramsteni	С	0.68 ± 0.02	0.12 ± 0.01	467	1.11±0.22	1.19±0.59	1.10 ± 1.86	0.21±2.66	452		
	D	0.71±0.03	0.13 ± 0.01	479	4.75 ± 5.87	19.6±19.9	2.79 ± 15.04	0.12 ± 37.81	446		
	А	0.57 ± 0.04	0.11 ± 0.02	492	2.10±0.32	4.90 ± 1.30	1.23 ± 0.13	0.10 ± 0.005	420		
Caraballum	В	0.61 ± 0.02	0.13 ± 0.01	461	0.81 ± 0.05	0.53 ± 0.24	0.46 ± 0.55	0.20 ± 0.71	436		
Celebellulli	С	0.62 ± 0.01	0.13±0.01	439	0.86±0.21	1.13±1.45	1.84 ± 1.78	0.34±0.12	433		
	D	0.68±0.03	0.16±0.02	473	48.7±819.7	298±5152	3.55±1.05	0.13±0.03	438		

Supplemental Table 4. 1TCM and 2TCM rate constant estimates of [¹⁸F]FEt-AMC13 uptake in brain regions of control rats.

(continued on the next page)

ROI	Rat		1TCM			2TCM					
		K ₁ (ml/g/min)	k ₂ (1/min)	AIC	K ₁ (ml/g/min)	k ₂ (1/min)	k ₃ (1/min)	k4 (1/min)	AIC		
Olfactory	А	0.55 ± 0.05	0.12±0.02	500	3.58±1.65	9.75±3.75	1.20 ± 2.96	0.09 ± 7.03	449		
bulbs	В	0.49 ± 0.02	0.08 ± 0.01	453	0.63 ± 0.07	0.47 ± 0.34	0.69 ± 0.56	0.20 ± 0.04	444		
	С	0.44 ± 0.01	0.09 ± 0.005	438	0.59 ± 0.10	0.68 ± 0.93	1.07 ± 3.21	0.23±3.75	431		
	D	0.50 ± 0.03	0.10 ± 0.01	479	1.08 ± 0.20	1.82 ± 0.90	0.92 ± 0.31	0.11±0.01	452		
Pituitary	А	0.52 ± 0.05	0.08 ± 0.02	510	6.16±6.57	16.8±16.5	1.11±15.04	0.06 ± 22.82	472		
·	В	0.63 ± 0.04	0.10 ± 0.01	490	1.23 ± 0.31	1.62 ± 0.42	0.99 ± 1.42	0.12 ± 2.70	474		
	С	0.52 ± 0.02	0.08 ± 0.01	472	0.97±0.34	1.54±0.73	1.23 ± 2.61	0.13±4.28	464		
	D	0.67 ± 0.05	0.12 ± 0.02	497	1.38 ± 0.24	1.48 ± 0.20	0.69 ± 0.58	0.11±1.34	473		

Supplemental Table 4 (continuation). 1TCM and 2TCM rate constant estimates of [¹⁸F]FEt-AMC13 uptake in brain regions of control rats.

Data are presented as means±SD.* Standard deviation could not be estimated

Region of interest	Logan V _T		1TC	M V _T	2TC	2TCM V _T		
	control	raclopride	control	raclopride	control	raclopride		
Striatum	7.72±0.84 (11)	6.97±0.32 (5)	7.60±0.64 (8)	6.69±0.41 (6)	7.90±0.84 (11)	6.97±0.39 (6)		
Hippocampus	6.49±0.88 (14)	6.25±0.56 (9)	6.34±0.71 (11)	5.88±0.56 (10)	6.62±0.86 (13)	6.27±0.63 (10)		
Thalamus	6.64±0.61 (9)	6.40±0.40 (6)	6.45±0.62 (10)	5.93±0.71 (12)	6.75±0.62 (9)	6.44±0.60 (9)		
Hypothalamus	6.10±0.44 (7)	5.76±0.26 (5)	5.86±0.60 (10)	5.38±0.38 (7)	6.20±0.55 (9)	5.83±0.34 (6)		
Cortex	5.69±0.49 (9)	5.42±0.44 (8)	5.53±0.38 (7)	5.17±0.60 (12)	5.75±0.45 (8)	5.45±0.52 (10)		
Brainstem	6.12±0.57 (9)	5.53±0.26 (5)	5.67±0.33 (6)	4.99±0.56 (11)	6.17±0.52 (8)	5.46±0.36 (7)		
Cerebellum	5.06±0.53 (11)	4.99±0.30(6)	4.68±0.34 (7)	4.43±0.40 (9)	5.08±0.49 (10)	4.96±0.44 (9)		
Olfactory Bulbs	5.64±0.57 (10)	5.14±0.43 (8)	4.99±0.62 (12)	4.36±0.55 (13)	5.45±0.52 (10)	5.02±0.61 (12)		
Pituitary	7.15±0.49 (7)	6.53±0.44 (7)	6.16±0.35 (6)	5.33±0.88 (17)	6.89±0.32 (5)	6.34±0.82 (13)		

Supplemental Table 5. V_T of [¹⁸F]FEt-AMC13 per brain region in control and raclopride-treated rats.

Data are presented as means±SD, n=4 for the control group, n=3 for the raclopride-treated group. Coefficients of variation (in %) are shown in

parentheses.

Supplemental Table 6. BP _{ND} of [¹⁸ F]FEt-AMC13	per brain region in control and raclopride-treated ra	ıts.
---	---	------

Region of	1'	TCM BP _{ND}	2TCM	BP _{ND} (V _T -based)		Logan BP _{ND}		SRTM BP _{ND}	
interest	control	raclopride	control	raclopride	control	raclopride	control	raclopride	
Striatum	0.63 ± 0.08	0.51±0.06 (-18%)	0.56 ± 0.05	0.41±0.05 (-27%)*	$0.52{\pm}0.01$	0.40±0.04 (-24%)*	0.51 ± 0.02	0.38±0.05 (-26%)**	
Hippocampus	0.35 ± 0.11	0.33±0.09 (-8%)	0.30 ± 0.07	0.26±0.06 (-13%)	0.28 ± 0.04	0.25±0.05 (-10%)	0.26 ± 0.04	0.23±0.05 (-13%)	
Thalamus	0.38 ± 0.06	0.33±0.04 (-12%)	0.33 ± 0.02	0.30±0.01 (-10%) *	0.31 ± 0.02	0.28±0.005 (-10%)*	0.28 ± 0.06	0.26±0.02 (-7%)	
Hypothalamus	0.25 ± 0.04	0.22±0.04 (-14%)	0.22 ± 0.03	0.18±0.06 (-19%)	0.21 ± 0.04	0.16±0.04 (-25%)	0.21 ± 0.03	0.16±0.04 (-23%)	
Cortex	0.18 ± 0.05	0.17±0.05 (-9%)	0.13 ± 0.04	0.10±0.02 (-27%)	0.13 ± 0.03	0.09±0.03 (-32%)	0.11 ± 0.03	0.08±0.02 (-24%)	
Brainstem	0.21 ± 0.03	0.13±0.03 (-41%)*	0.22 ± 0.02	0.10±0.02 (-53%)**	0.21 ± 0.02	0.11±0.02 (-47%)**	0.18 ± 0.04	0.07±0.03 (-60%)**	
Olfactory Bulbs	0.07 ± 0.16	-0.02±0.03 (-127%)	0.08 ± 0.13	0.01±0.04 (-88%)	0.12 ± 0.12	0.03±0.03 (-74%)	$0.10{\pm}0.13$	0.11±0.05 (+10%)	
Pituitary	0.32 ± 0.05	0.18±0.05 (-38%)	0.36 ± 0.07	0.13±0.04 (-23%)	0.42 ± 0.05	0.13±0.03 (-26%)	0.71 ± 0.32	0.55±0.53 (-22%)	

Data are presented as means \pm SD, n=4 for the control group, n=3 for the raclopride-treated group (except for the SRTM BP_{ND} values, where n=4).

Next to the BP_{ND} values of the raclopride-treated group, percentage of change relative to the control group is shown. * P < 0.05, ** P < 0.01, 2-sided

Welch test

LITERATURE CITED

- 1. Innis RB, Cunningham VJ, Delforge J, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.
- 2. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow & Metab. 2009;30(1):46–50.