ADDITIONAL INFORMATION

Calculation of the number ratio of ${ }^{111}$ In nuclides and micelles

For the calculation of the number of micelles we have used the aggregation number from the publication by Wilhelm et al. ${ }^{25}$ For a PS-b-PEO block copolymer with a comparable size, i.e. for PS-b-PEO 11200-17500 an average aggregation number of 290 have been reported. At a PS-bPEO 9500-18000 concentration of $1.1 \mathrm{mg} / \mathrm{mL}$ in a default volume 2.3 mL the number of micelles will be:

$$
\frac{1.1 \times 10^{-3} \mathrm{~g} / \mathrm{mL} \times 2.3 \mathrm{~mL}}{(9500+18000) \mathrm{g} / \mathrm{mole}} \times \frac{6.022 \times 10^{23} \mathrm{n} / \text { mole }}{290 \mathrm{n} / \text { micelle }}=1.91 \times 10^{14} \text { micelles }
$$

The number of ${ }^{111}$ In nuclides is directly proportional to the activity and can be calculated with the decay constant, λ, which for ${ }^{111}$ In is $2.86 \times 10^{-6} \mathrm{~s}^{-1 .}$ At 50 MBq the number of ${ }^{111}$ In atoms is:

$$
N=\frac{A}{\lambda}=\frac{50 \times 10^{6} s^{-1}}{2.86 \times 10^{-6} s^{-1}}=1.74 \times 10^{13} \text { atoms }
$$

In this example there is about ten times excess of micelles compared to the number of ${ }^{111} \mathrm{In}$ atoms, meaning that part of the micelles will not contain any ${ }^{111} \mathrm{In}$.

