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Supplemental Methods 

Data processing 

 The DaTscan images were preprocessed by selecting a continuous segment of 22 axial 

image slices of each image volume where the central slice had the highest relative mean uptake 

intensity. This was done to capture the structure of the striatum and to remove image slices of 

relatively lower intensity and higher noise. The resulting DaTscan images had a cubic voxel size 

of 2 mm, were zero-padded to yield an image size of 128 × 128 × 22, and normalized to values 

from 0 to 1.  

 A time series of measured MDS-UPDRS-III subscores relating to motor signs of 

Parkinson’s disease (PD) were extracted at the time points of screening, baseline, 3, 6, 9, 12, 42, 

48, and 54 months. Those subscores reflected the motor signs of PD, including speech, facial 

expression, rigidity, finger tapping, hand movements, pronation-supination movements of hands, 

toe-tapping, leg agility, arising from a chair, gait, freezing of gait, postural stability, posture, body 

bradykinesia, postural and kinetic tremor of the hands, rest tremor amplitude, and constancy of 

rest tremor. Information about whether the patient was receiving medication for treating symptoms 

of PD and the clinical state of patients receiving medication (good or poor response) at each time-

point were also extracted [1]. MDS-UPDRS-III scores missing at any time point were set to be 

equal to the value of the previous time step following the last observation carried forward 

imputation procedure. The observed MDS-UPDRS-III subscores, overall MDS-UPDRS-III score, 

and treatment information at Years 0 to 1 (screening, baseline, 3, 6, 9, and 12 months) were used 

as inputs to the approach. This resulted in an input time sequence consisting of six time-points 

(from screening to 12 months) with thirty-six features that are referred to as the input MDS-

UPDRS-III information.  

The MDS-UPDRS-III subscores at 42, 48, and 54 months were summed and averaged to 

yield the overall MDS-UPDRS-III scores at Year 4 which were used as outcome. The outcome 
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prediction task was formulated as a regression task since the overall MDS-UPDRS-III score at 

Year 4 is a continuous value.  

Image feature extraction with a convolutional LSTM-based network architecture 

The DaTscan images at Years 0 and 1 were input as a time sequence into a convolutional 

LSTM-based network architecture for feature extraction (Fig 1a). The convolutional LSTM network 

is a type of recurrent neural network architecture that is similar to an LSTM-based architecture 

where the input and recurrent transformations are both convolutional. The convolutional LSTM-

based networks can better capture spatiotemporal correlations in the input data where the input 

data are spatiotemporal sequences [2].  

The DaTscan image volumes at Years 0 and 1 consisted of 22 axial slices that contained 

the complete structure of the striatum at two time points. The output of the convolutional LSTM 

layer was then placed into a batch normalization layer followed by a three-dimensional (3D) 

convolutional layer and 3D global average pooling layers. Batch normalization has been shown 

to stabilize learning and accelerate training by normalizing each batch of inputs into subsequent 

layers of the network [3]. The output of the global average pooling layer was an N-dimensional 

extracted feature vector containing information about the original input DaTscan images from 

Years 0 and 1. Here, the dimensionality of the extracted feature vector was N=64.  

Image feature extraction with pre-trained CNNs 

Deep learning methods typically require very large training data sizes, on the order of 

thousands, to adequately train deep neural networks on various image analysis tasks [3]. Due to 

our limited dataset consisting of only 198 patients, we extracted features from DaTscan images 

at Years 0 and 1 with four commonly used CNN architectures that were pre-trained on the 

ImageNet dataset [4], including VGG16 [5], ResNet50 [6], DenseNet121 [7], and InceptionV3 [8]. 

The ImageNet dataset consists of millions of natural images across 1,000 different class label 

categories [4]. We hypothesized that these CNNs that were pre-trained on the natural image 
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classification task with the ImageNet dataset should be able to extract generalized spatial features 

from DaTscan images.  

 The maximum intensity projection (MIP) was first performed in the longitudinal direction of 

the DaTscan image slices (Fig 1). The MIPs obtained from the DaTscan images from Years 0 

and 1 were used as input to the pre-trained VGG16, ResNet50, DenseNet121, and InceptionV3 

CNN-based architectures. Since these pre-trained CNNs can only take 2D images as inputs, MIPs 

of the DaTscan images were used as inputs to the pre-trained networks instead of 3D image 

volumes. The MIPs were used to retain 3D information about the imaged volume. The CNN-based 

architectures were originally pre-trained on the image classification task on natural images from 

the ImageNet dataset. Imaging features were extracted from the last layer before the classification 

layer of each pre-trained network. These feature maps were input into a 2D global average pooling 

layer resulting in N-dimensional feature vectors containing information about the MIPs of DaTscan 

images from Years 0 and 1. The dimensionality of the feature vectors extracted from the VGG16, 

ResNet50, DenseNet121, and InceptionV3 networks were N=512, 2048, 1024, and 2048, 

respectively. Note that these pre-trained CNNs were not further trained or fine-tuned on the 

clinical data and were used simply as feature extractors.  

The feature vectors corresponding to the MIPs from Years 0 and 1 were extracted from 

each pre-trained CNN-based architecture separately. The feature vectors were treated as a time 

sequence consisting of two timepoints at Years 0 and 1. This time sequence was then placed into 

an LSTM-based network architecture to capture the temporal features from the MIPs of DaTscan 

images at Years 0 and 1. The feature vectors extracted from each pre-trained CNN architecture 

were also combined into one feature vector with a dimensionality of N=5632 (Fig 1), which was 

referred to as the “All ImageNet” feature vector. The All ImageNet feature vector from Years 0 

and 1 was also treated as a time sequence and was used as input to the LSTM-based network 

(Fig 1).  
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In summary, the relevant spatial features present in the DaTscan images were first 

extracted using the pre-trained CNN-based architectures. Those spatial features extracted from 

DaTscan imaging were then used as input to an LSTM network, which extracted the relevant 

temporal features [2]. This differs from the previous method where the relevant spatiotemporal 

features were extracted directly from the original DaTscan images using a convolutional LSTM-

based architecture in one step.  

Image feature extraction using semi-quantitative imaging measures 

The semi-quantitative imaging measures of the striatal binding ratio of the left caudate, 

right caudate, left putamen and right putamen were also used as predictors for the prediction task. 

The striatal binding ratios were extracted from the PPMI database. The striatal binding ratio is 

defined as the ratio of specific uptake in the striatum to non-specific uptake in the background. 

Semi-quantitative imaging measures were input as a time sequence that consisted of two time-

points at Years 0 and 1 to an LSTM network which extracted N-dimensional feature vectors 

corresponding to the relevant temporal features for the prediction task (Fig 1). Here, the 

dimensionality of the extracted feature vector was N=64.  

Training and hyperparameter optimization  

 The approach was trained by optimizing a mean absolute error loss function that quantified 

the error between the measured and predicted MDS-UPDRS-III scores in Year 4. The network 

was optimized via a first-order gradient-based optimization algorithm, Adam [9]. A grid search 

was performed for hyperparameter optimization of the approach. The general range for each 

hyperparameter sweep spanned several orders of magnitude. The optimized hyperparameters 

included batch size, dropout probability, number of training epochs, and the dimensionality of the 

N-dimensional feature vectors extracted from baseline DaTscan imaging (Stage 1) and MDS-

UPDRS-III subscores (Stage 2). Batch size is defined as the number of training examples used 

to update the network weights for each iteration of training. An epoch is defined as one pass over 

all the examples in the training set while training the network. The range of batch sizes tested was 
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4, 8, 16, 32, and 64. The range for dropout probability was 0, 0.3, 0.5, and 0.8. The range for the 

number of training epochs was 75, 100, 150, 200, 250, 300, 500, and 1,000. The range for the 

dimensionality of the N-dimensional extracted feature vectors was N=4, 8, 16, 32, 64, 128, and 

256.  

Hyperparameter optimization was performed by training the proposed approach on the 

training set for each combination of hyperparameter values via grid search. The best performing 

combination of hyperparameter values was considered to be the combination that yielded the 

smallest mean absolute error loss function value on the validation set. The optimal 

hyperparameters were found to be N=64 (dimensionality of feature vectors), batch size of 32, 

training epochs of 200, and dropout probability of 0.5. After the optimized hyperparameters were 

selected, the approach was trained on the data from the training and validation sets consisting of 

158 patients using those hyperparameters.  

Evaluation metrics 

 The approach was evaluated on the test set of 40 patients. The accuracy of the approach 

was quantified by evaluating several standard evaluation metrics, including mean absolute 

percentage error (MAPE), mean absolute error (MAE), mean squared error (MSE), and Pearson’s 

correlation coefficient (r) [10–12].  

The evaluation metrics of MAPE, MAE, and MSE quantify the error between the predicted 

and observed MDS-UPDRS-III scores in Year 4 for the regression task and are defined as in 

equations 1, 2, and 3, respectively.  
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1
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The term �̂�𝑖 is defined as the predicted MDS-UPDRS-III score, the term 𝑦𝑖 is defined as 

the observed MDS-UPDRS-III score for the 𝑖𝑡ℎ sample, and 𝑁 is defined as the sample size. The 

vertical bars denote absolute value in equations 1 and 2. For metrics of MAPE, MAE, and MSE, 

lower values indicate a more accurate prediction of the MDS-UPDRS-III score in Year 4.  

Pearson’s correlation coefficient measures the linear correlation between the predicted 

and observed MDS-UPDRS-III scores in Year 4 and ranges from -1 to +1 where larger positive 

values indicate a larger positive correlation and vice versa for negative values. Higher values of 

the Pearson’s correlation coefficient between the predicted and observed MDS-UPDRS-III scores 

in Year 4 indicate more accurate prediction. As a rule of thumb, correlation coefficient values 

greater than 0.7 indicate a high positive correlation [12]. The Pearson’s correlation coefficient is 

defined in equation 4 where 𝑐𝑜𝑣 is defined as covariance and 𝜎 is defined as the standard 

deviation [12]. 

𝐸𝑞𝑢. (4)                                                                   𝑟 =
𝑐𝑜𝑣(�̂�𝑖 , 𝑦𝑖)

𝜎�̂�𝑖
𝜎𝑦𝑖

 

To further evaluate the performance of the proposed approach, an ordinary least squares 

linear regression [13] was performed between the predicted and observed MDS-UPDRS-III 

scores in Year 4. The ordinary least squares regression fit a linear model solving for the intercept 

(𝛽1) and slope (𝛽2) in equation 5 that best fits the relationship between the predicted and observed 

MDS-UPDRS-III scores. 

𝐸𝑞𝑢. (5)                                                                  �̂�𝑖 = 𝛽1 +  𝛽2𝑦𝑖 

The coefficient of determination or R2 value which indicates the goodness-of-fit of the 

regression [14] was reported as an evaluation metric for the approach. The coefficient of 

determination indicates the amount of the total variance in the data that is explained by the fitted 

linear model. Values for R2 range from 0 to 1 where higher values of R2 indicate a more accurate 

prediction of the MDS-UPDRS-III score in Year 4. An R2 value greater than 0.7 generally indicates 

a strong relationship between the observed data and the fitted values.  
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 The approach was compared to cases where a single network was given different subsets 

of the clinical data as inputs. The difference of squared errors given by equation 6 was used to 

compare the performance of the approach to that of those networks.  

𝐸𝑞𝑢. (6)                              𝑀𝑆𝐸𝐷𝑖𝑓𝑓,𝑗 =
1

𝑁
∑ [(�̂�𝑖,𝑗 − 𝑦𝑖)

2
− (�̂�𝑖,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 − 𝑦𝑖)

2
]

𝑁

𝑖=1

 

The term �̂�𝑖,𝑗 is defined as the predicted MDS-UPDRS-III score in Year 4 for the 𝑖𝑡ℎ sample by 

the network trained using the feature subset combination for the 𝑗𝑡ℎ case for 𝑗 = 1, 2, 3, … (Tables 

1 and 2). The term �̂�𝑖,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  is defined as the predicted MDS-UPDRS-III score in Year 4 for the 

𝑖𝑡ℎ sample by the ensemble approach. Positive values for the difference of squared errors indicate 

relatively worse performance in each case when compared to the performance of the ensemble 

approach and vice versa for negative values. Lesser values indicate a more accurate prediction 

of the MDS-UPDRS-III scores in Year 4 when compared to the ensemble approach.  
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