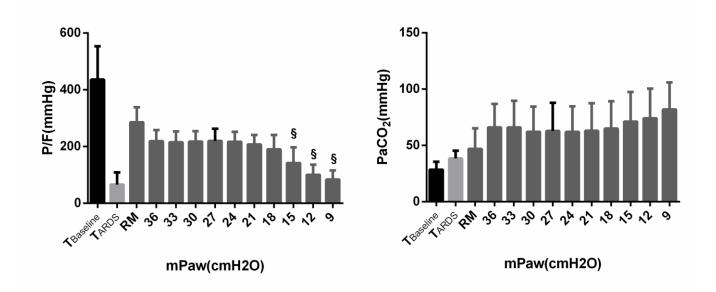

Optimal mean airway pressure during high frequency oscillatory ventilation in an experimental model of acute respiratory distress syndrome: EIT-based method


Songqiao Liu, MD, PhD¹, Zhanqi Zhao, PhD^{2, 3}, Li Tan, MD, ^{1, 4}, Lihui Wang, MD¹, Knut Möller, MD, PhD², Inez Frerichs, MD, PhD⁵, Tao Yu, MD, PhD¹, Yingzi Huang, MD, PhD¹, Chun Pan MD, PhD¹, Yi Yang, MD, PhD¹, and Haibo Qiu, MD, PhD¹

Additional File 1

Additional file 1: Figure S1. Flowchart of the study.

ARDS, acute respiratory distress syndrome; EIT, electrical impedance tomography; HFOV, high-frequency oscillatory ventilation; mPaw, mean airway pressure; PCV, pressure control ventilation.

Additional file 1: Figure S2. PaO₂/FiO₂ (left) and PaCO₂ (right) during mPaw decrements trial after having fully recruited the lungs.

Mean values and standard deviations are shown.

§, PaO₂/FiO₂ decrease >10% compared with mPaw 18 cmH₂O, indicates the mPaw level at which the predefined optimal oxygenation criteria were reached during mPaw decrements trial after having fully recruited the lungs.