
Supplementary information
Automated characterization of patient-ventilator interaction using surface
electromyography

Appendix A: Data preprocessing
A.1 Esophageal pressure

Esophageal pressure signals are often strongly contaminated by cardiogenic pres-

sure artifacts, which substantially complicate the underlying respiratory pressure

waveform interpretation. Thus, these artifacts were removed prior to further anal-

yses using the template subtraction method described in [1]. Briefly, a template

was formed by averaging over many artifacts, and the template was subtracted

from Pes with each cardiac cycle. The signal filtered in this way enables much more

accurate detection of the onset of respiratory effort. The recognition of the end

of efforts is still challenging because Pes contains a mixture of the pressure Pmus

generated by respiratory muscles and the volume-dependent elastic recoil of the

chest-wall Pcw. To correct for Pcw, the chest-wall elastance Ecw was determined as

described in appendix A.2 Finally, the muscle pressure at each instant was calcu-

lated via Pmus = EcwV − Pes.

A.2 Chest-wall elastance estimation

For calculating the muscle pressure Pmus, the volume-dependent elastic recoil of

the chest-wall PCW = ECWV and thus, the chest-wall elastance ECW needs to be

estimated for each patient and each measurement. We integrated three approaches

for computing ECW, with decreasing priority. First, if one or more fully passive

breaths (no patient activity) were identified by experts, ECW was estimated by

ECW = argmin

tend∑
t=tstart

(ECWV (t)− Pes(t))
2

(1)

where tstart and tend are the beginning and end of inspiration defined by the start

and end of positive airflow. In case multiple fully passive breaths were recognized,

the sum in eq. (1) was extended with these breaths. Second, if experts could not

recognize any fully passive breath but could identify one passive point during in-

spiration and one during expiration in one breathing cycle, the formula

ECW =
Pes(t1)− Pes(t2)

V (t1)− V (t2)
(2)

was used. Here t1 and t2 are the annotated passive points. In case multiple breathing

cycles with two passive samples could be identified, eq. (2) was applied to each
1
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pair. Subsequently, ECW was computed by averaging over the results. Third, in

case previous approaches to determining ECW could not be applied, a theoretical

value was assumed. Therefore, the vital capacity of female patients is calculated by

VC [cm3] = (21.78− 0.101 · age [years]) · height [cm] (3)

and we used

VC [cm3] = (27.63− 0.112 · age [years]) · height [cm] (4)

for male patients [2]. Finally, we computed ECW according to Mauri et al. [3] with

4% of VC.

A.3 Electromyographic signals

Both recorded sEMG channels (costal margin and parasternal) were preprocessed

individually. At first, powerline interference was removed using a zero-phase fourth-

order Butterworth band-stop filter. Next, cardiac artifacts were detected with the

Pan-Tompkins algorithm and suppressed using wavelet decomposition [4, 5]. To

obtain the sEMG envelope, the denoised signal was smoothed using a root-mean-

square filter with a 250ms window. All muscles exhibit a short latency between

neural drive and generated force. This is referred to as a neuromechanical delay

and has been investigated in the past for various muscles. For the diaphragm values

of about 18ms have been reported [6]. Ideally, the sEMG envelope would directly

compensate for this effect, so we parameterized the filter lag to minimize the delay

between electrical muscle activity and Pmus. This global filter lag was determined by

maximizing the cross-correlation between the sEMG envelope and the Pmus wave-

form across all datasets. Finally, we applied simple heuristics to select the sEMG

channel that is most informative for the automatic segmentation of inspirations as

described in appendix B.1.

Appendix B: Criteria
B.1 sEMG signal criteria for automated detection

The properties of respiratory sEMG signals vary between patients, recordings, and

channels. Various factors influence the amplitude and other features, such as the

recorded muscles, electrode positions, and characteristics of tissue between elec-

trodes and the target muscle. Furthermore, the patient activity, to be represented

by sEMG, depends on the patient’s condition, which is influenced by the disease

state, medication and sedation, and the degree of ventilation. Another impact to

be considered is crosstalk by other muscles, specifically expiratory crosstalk. As a

result, automated sEMG detection is not always possible and not always useful.

Specifically, the signal should have a minimum signal strength and should show

mainly inspiratory activity.

To investigate these requirements, we characterized each sEMG signal using

the signal-to-noise ratio (SNR) and the inspiratory-to-expiratory amplitude ratio

(IEAR). The SNR is calculated according to Graßhoff et al. [7] and is a measure of
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Figure B.1: Visualization of sEMG signal criteria in the form of a decision tree based on
SNR (signal-to-noise ratio) and IEAR (inspiration-to-expiration ratio). If both channels show
patient activity and are of similar and sufficient quality, both are automatically segmented,
and the earlier onset (breath-by-breath) is used. In case one channel is not reliable or has
a much lower signal quality, only one channel is used. If no channel shows patient activity
or the signal quality is too low, no automated segmentation is applied.

the signal strength, which relates the signal amplitude to the background noise am-

plitude. The second ratio characterizes the level of expiratory crosstalk contamina-

tion and is calculated as follows. The sEMG signal is segmented using the airflow V̇

into inspiratory (positive V̇ ) and expiratory phases (negative V̇ ). To remove the

transitions between inspiration and expiration and vice versa, each segment’s size

is further decreased by the first and last quarters. Next, in each segment, the am-

plitude is estimated using the 0.9-quartile. Subsequently, all inspiratory segments

are condensed by their 0.75-quartile. The same applies to all expiration phases. The

final IEAR is calculated from the relation of obtained inspiratory to expiratory sig-

nal amplitude. Using quartiles ensures robustness to outliers. Additionally, as the

IEAR is calculated on multiple breathing cycles (minimum 15), we assumed that

the effect of auto and ineffective triggers can be neglected.

Figure B.1 visualizes the sEMG signal criteria based on SNR and IEAR. The two

ratios were calculated for each recording, and both measured sEMG channels. First,

both channels were evaluated individually. Second, if both channels show patient

activity and no crosstalk, they are compared. If they show similar values for IEAR

and are correlated, both are used (example in fig. B.2d). Otherwise, only the better

channel is automatically segmented (example in fig. B.2c). The same applies if only

one channel is reliable (example in fig. B.2b). No automated detection is performed

if no channel shows patient activity and sufficient quality (example in fig. B.2a).
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(a) No automated detection (SNR1 = 1.9, IEAR1 =
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(b) Only channel 2 is reliable (SNR1 = 3.3, IEAR1 =
0.3, SNR2 = 2.8 and IEAR2 = 1.7 )
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(c) Both channels are considered reliable but only chan-
nel 1 is used, because it shows higher signal ampli-
tudes (SNR1 = 3.1, IEAR1 = 7.1, SNR2 = 3.1 and
IEAR2 = 4.3 )
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(d) Both channels are segmented and the earlier onset
is used (SNR1 = 3.0, IEAR1 = 5.4, SNR2 = 12.0 and
IEAR2 = 4.4 )

Figure B.2: Examples for SNR (signal-to-noise ratio) and IEAR (inspiration-to-expiration
signal ratio and the automated decision based on the signal criteria in fig. B.1. Each sub-
figure shows (top to bottom) the Paw and V̇ waveforms and both sEMG envelopes, where
channel 1 corresponds the measurements of the diaphragm and channel 2 records the aux-
iliary muscles.

B.2 Ventilation mode criteria for PVI characterization

In this study, the patient-ventilator asynchrony was analyzed automatically, based

on segmentations of the inspiratory patient effort in sEMG measurements and the

segmentation of the ventilator support in the airway Paw. The study analysis con-

siders trigger asynchronies. Therefore, only recordings are included in the analysis,

where patients were ventilated in pressure support modes, with well-distinguishable

inspiration and expiration phases. We especially excluded CPAP and CPAP with

tube compensation settings.

Appendix C: sEMG detection algorithms
Respiratory sEMG signals contain unspecific background noise. This affects the

envelope in the form of a varying offset. Prior to activity detection, the offset of the

envelope was removed. For this purpose, the procedure described by Graßhoff et

al. [7] was used.
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Figure C.1: Illustration of the substeps of the triangle algorithm on an example with low
SNR. The first plot shows the amplitude-based threshold, leading to the early segmentation
in the second plot. Yellow segments are excluded, because they are too short. For applying
the triangle maximization procedure [8], points (A) during expiration and (C) during in-
spiration are determined. The third triangle corner (B) marks the beginning of inspiration.
The first inspiratory activity is displayed enlarged on the right side.

C.1 Triangle algorithm

The first sEMG detection algorithm consists of two phases. The first step segments

the signal using a coarse but slowly adapting threshold. The threshold is calculated

as 40% of the maximum amplitude of the sEMG envelope within a sliding 10 s

window. Subsequently, segments shorter than 300ms are removed, and if the gap

between two segments is shorter than 400ms, the gap is closed, and both segments

are combined into one. Each segment is assigned to one inspiratory process. The

exact onset of inspiration is then calculated, similar to the procedure proposed by

Garcia-Castellote et al. [8]. A visualization of this method is presented in fig. C.1.

First, points (A) and (C) are determined for each segment. (C) is positioned on

the maximum of the segmented area, and point (A) is set to the beginning of

the previous expiratory phase. For this, 30% of the distance between (C) and the

maximum of the previous segment is assumed. A third point, (B), is now placed on

the sEMG envelope between (A) and (C) so that the area of the spanned triangle

is maximized. Point (B) is used as the start of inspiration. This point can also lie

outside the earlier segmentation.

C.2 Adaptive thresholding algorithm

The second algorithm is inspired by the defragmentation method proposed by Sin-

derby et al. [9] for EAdi, which was modified in this work to better account for

the characteristics of sEMG. Briefly, a highly sensitive, adaptive threshold was used
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to detect the onsets of inspirations, and then simple defragmentation rules were

applied to reject false positives or merge adjacent breaths.

The adaptive threshold is calculated as 10% above the median sEMG envelope in

a 3.5 s moving window. The segmentation is implemented using the state diagram

in fig. C.2a, which runs over the data from left to right. An onset is detected when a

sample exceeds the adaptive threshold and has a positive slope (i.e., it is larger than

the previous sample). When the signal drops below the threshold (before reaching

the end-of-inspiration criterion) the breath is rejected. When the end-of-inspiration

criterion is reached (signal drops below 70% of the maximum), the current breath

is rejected if its too short (< 300ms) and it is merged with the previous breath

when there is only a small gap between the two (< 350ms between the previous

and current breath). If the rejection/merge criteria are not met, the current breath

is considered to be valid, and the start/end points are stored. The algorithm then

returns to its initial state and repeats all of the detection steps described above.
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variables
s : sEMG amplitude of current sample
t : threshold
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push() : add sample to stack
pop() : remove the last sample from stack
check len() : check minimum duration of inspiration
check merge() : check maximum distance of inspirations
merge breaths(): merge this and previous inspiration

(a) The state diagram shows a Mealy machine, where each edge is labeled with input / output.

0

2

4

sE
M
G

(µ
V
)

sEMG

threshold

initial detection

detected
inspiration start

detected
inspiration end

0

2

4

sE
M
G

(µ
V
)

20 25 30 35 40 45 50

0

2

4

time (s)

sE
M
G

(µ
V
)

(b) Visualization of the detection procedure using the triangle algorithm on the same example as in fig. C.1. In
the first plot, the adaptive threshold is given in red. The second row shows the intermediate inspiration starts
and ends. In the bottom row, only accepted detections are displayed.

Figure C.2: Overview on detection procedure of the adaptive thresholding algorithm.


