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Supplementary Material 1: Hand segmentation

To extract the hand and mask the background, masks representing the hand
were annotated on 528 images randomly drawn from the RSNA training
set. The mask annotation used a semi-automatic procedure based on apply-
ing intensity thresholds and edge detection. The segmentation was manually
controlled and, if needed, corrected. Leveraging this dataset, we trained Ten-
sorMask (Chen et al, 2019) and Efficient-UNet models (Baheti et al, 2020) for
automated mask prediction using 460 masks and leaving the remaining masks
for validation. To avoid fitting the BA model to the masks predicted by only
one of the masking models and potentially wrongly predicted masks decreas-
ing the effective size of the training set, in each training epoch the masks were
randomly selected between either model. To allow for fast mask prediction
without hardware acceleration, a light-weight FastSurferCNN (Henschel et al,
2020) model was trained on the masks predicted by the TensorMask model of
the complete RSNA BA training set excluding images with manually edited
masks. To reduce the model size, the number of filters was reduced to 32.
The models were trained using the ADAM optimizer (Kingma and Ba, 2014)
with a base learning rate (LR) of 10−2 scheduled with the CosineAnnealingLR
(T0 = 10, minimum LR of 5∗10−5) for 50 epochs and a batch size of 32. Weight
decay was set to 10−6. To reduce biases towards detecting all high-intensity
pixels as false positive, the weight of the logistic loss term of the composite
loss (Henschel et al, 2020) was adapted to also include all pixels outside of the
annotated mask with an intensity higher than the 80th percentile of the anno-
tated mask. All images were standardized to a mean intensity of zero and a
standard deviation of one. We chose this standardization over the commonly
used min-max normalization as the latter would be highly susceptible to few
high-intensity pixels e.g. due to remaining scanning or imaging artifacts. Fur-
ther, we simulated scanning artifacts by drawing artificial boxes and gradient
stripes. With this configuration, we achieved a Dice similarity score of 0.993
with respect to the unseen manually edited set of masks. To test the perfor-
mance of the full BA prediction pipeline, the model evaluation was carried out
using FastSurferCNN masking.
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Supplementary Material 2: Details of bone age
model training

All BA models were trained using a mean squared error (MSE) loss and the
ADAM optimizer (Kingma and Ba, 2014). The initial LR was set to 10−3 and
decayed using ReduceLRonPlateau (factor of 0.2, patience of 10 epochs) to a
minimum LR of 10−4 tracking the MAD in the validation set. The weights
of the final models from each training process were chosen based on the best
validation MAD (“checkpointing”). For regularization, dropout (p = 0.2) was
added to the FC layers and a weight decay of 5 ∗ 10−6 was applied. We resized
the images to a minimum resolution of 512 × 512 to assert the resoluting
potentially relevant fine-grained structures in the bones such as growth gaps.
Due to the miss-match of the training resolution with the pre-training of the
smaller EfficientNet-b0 version, the -b0 models were trained from scratch
using the Kaiming initialization (He et al, 2015). However, the larger -b4 ver-
sions are pre-trained at a similar resolution, so the -b4 models used ImageNet
(Deng et al, 2009) pre-training. The -b0 versions were trained for 300 epochs,
whereas the pre-training of the -b4 models allowed for faster convergence, so
the training was reduced to 100 epochs. The mini-batch size was set to 32 for
all models.

As default data augmentations we used the approach described by Cicero
and Bilbily (2017) (relative scaling and translation of ±0 − 20%, rotation of
±0 − 20◦, shear of ±0 − 1◦ horizontal flipping with p = 0.5). We extended
this to our strong set of augmentations by increasing the maximum scaling
and translation to ±30%, rotation to ±30◦, and shear to ±10◦. Additionally,
non-linear intensity manipulations with either (p = 0.33) a Gamma-correction
(gamma chosen from [0.7, 1.3]) or (p = 0.67) a contrast limited adaptive
histogram equalization (CLAHE, Pizer et al, 1987, clip limit: 3), and image
sharpening (p = 0.2, alpha choosen from [0.5, 0.75] and lightness chosen from
[0.5, 1]) were applied. To compensate for strong regularization inducing a
bias towards predicting more extreme BAs on non-augmented samples, the
inferred predictions were corrected via a linear regression model fitted on the
predictions of the non-augmented training set.

Test time augmentation (TTA) was performed by rotating the input
image by −10,−5, 0, 5, 10◦ and each with and without applying additional
horizontal mirroring. Both, model ensembling and TTA, use an unweighted
average of all predictions for any given image.

The models included in our final ensemble were chosen based on the best
validation MAD score in each training condition. Figure 1 of this supplemen-
tary information shows a sketch of the model architecture. The models were
implemented in PyTorch (v1.10, Paszke et al, 2019) using the lightning frame-
work (v1.6, Falcon et al, 2019). We used the Detectron2 (v0.4, Wu et al, 2019)



4 Deeplasia, Rassmann et al. (2023), Supplementary Information

avg. pool

EfficientNet Convolutional Backbone Fully-connected Classifier

Predicted
Bone Age

♂/♀ 

avg. pool

Fig. 1 Model architecture for bone age prediction. The gray-scale input image is passed
through an Efficientet backbone model. The obtained features are combined with an inflated
representation of the sex and passed into a fully-connected network to obtain the bone age.

implementation of Tensormask Chen et al (2019). Data augmentation was
conducted using the Albumentations library (v1.1, Buslaev et al, 2020). Image
pre- and postprocessing was conducted in OpenCv (v4.5, Bradski, 2000).

Predicting sex from hand X-ray and its effect on BA
estimation

Biologically, bone development is highly sex-specific as girls develop and
mature earlier and faster than their male peers. Consequently, the same scan
read as male rather than female underestimates the BA and vice-versa (Tanner
et al, 2001; Greulich and Pyle, 1959). Hence, conducting the BA assessment
with the wrong sex can cause wrong results both in manual and automatic
assessment (Martin et al, 2009). While such user errors are usually ignored in
the model evaluation, assigning the wrong sex in a clinical setting will result
in a highly inaccurate BA estimation. Yune et al (2019) demonstrated that
the sex of a patient can be rather precisely predicted from a hand X-ray.
Replicating their results, we integrate sex prediction into our BA estimation
pipeline rendering the prediction more robust to user errors. The sex predic-
tion task was formulated as logistic regression. To this end, the baseline model
(EfficientNet-b0 backbone, a single FC layer of 256 neurons) was extended
with an additional output neuron for the sex, while the sex was removed as an
input. The model was then trained using an additional binary cross-entropy
loss on the sex prediction task and the MAD was replaced by the area under
the receiver operating characteristic curve (AUROC) as a validation metric.
In line with previous findings, on the RSNA test set our sex prediction model
achieves an accuracy of 93.0%, 89.3%, and 81.8% for the RSNA test set, the
Digital Hand Atlas, and the German Dysplastic Bone Dataset, respectively.
Using the sex predicted by the model as input to our bone age models, the
accuracy in each test set drops considerably (Table 1). Hence, completely omit-
ting sex annotated by the user would result in a dramatic loss of accuracy.
Therefore, we propose to use the sex prediction as mainly a verification step
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to mark contradictions between user input and model prediction followed by
the user double-checking to potentially correct erroneous inputs.

With ground truth sex With predicted sex

Dataset
MAD

(months)
RMSE

(months)
MAD

(months)
RMSE

(months)

RSNA 3.9 5.1 5.4 8.4
DHA 5.8 7.7 6.7 9.1
GDBD 6.0 7.7 8.4 11.3

Table 1 Performance of the model ensemble on different datasets using either the real
biological sex (ground truth) or the sex predicted by the dedicated model.
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Supplementary Material 3: Model
experimentations

DL model ensembles often show higher performances compared to single mod-
els (see e.g. Pan et al, 2019; Hustinx et al, 2023; Pontikos et al, 2022),
however, usually multiple experimentations are required to reach a suitable
set of models. We took the following steps to investigate the optimum model
configurations:

In the first experiment, the effect of applying a stronger data augmenta-
tion than previously proposed by Cicero and Bilbily (2017) was studied. To
this end, we compared the performance of the smallest model configurations
(EfficientNet-b0 with 512 × 512 input resolution) trained with default and
strong augmentations. These include additional non-linear intensity transfor-
mations and edge sharpening (see the previous section of this supplementary
information).

Assessing the performance of these models on the internal validation
set of the RSNA dataset shows that the strong augmentations improve the
prediction accuracy across all assessed model configurations (see Table 2 of
this supplementary information for details). Therefore, we assumed that the
strong augmentations would improve generalization to unseen data and used
these augmentations for all the subsequent experiments as our baseline train-
ing condition.

Next, we studied the effect of scaling the model size by replacing the
EfficientNet-b0 backbone (5.3 ∗ 106 parameters) with the larger -b4 version
(19.3 ∗ 106 parameters) in the large CNN condition. Finally, we explored the
effect of increasing the input resolution from 512 × 512 to 1024 × 1024 as the
high-resolution condition. Both of the latter modifications show additional
improvements compared to the baseline configuration in the RSNA validation
set (Table 3 of this supplementary information).

As a final experiment, we conducted test time augmentation (TTA) similar
to the method proposed by Cicero and Bilbily (2017) for the three chosen
models. This improved the ensemble validation accuracy MAD from 6.12 to
6.08 months, see Table 4 of this supplementary information. Given that the
TTA yielded only a marginal improvement but has high computational costs,
we decided not to include it in our BA inference approach.

The Tables 2, 3, and 4 of this supplementary information list the detailed
results of our experimentation for building the model ensemble.
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Fig. 2 Pairwise correlations of the predicted bone ages (BAs) on the RSNA validation
dataset of nine models with different EfficientNet backbone models (EfficientNet-b0 and
-b4 ) and at different image resolutions (512 × 512 and 1024 × 1024). For each combina-
tion of backbone and resolution models with various sets of FC layers ([256], [512, 512],
[1024, 1024, 512, 512], top to bottom / left to right) were trained and validated. The corre-
lation of the predicted BAs is stated as Pearson’s correlation coefficient.

EfficientNet
version

Input resolution FC layers
Val. MAD (months)

default augm. strong augm.

b0 512 × 512 [256] 6.6 6.4
b0 512 × 512 [512, 512] 6.8 6.7
b0 512 × 512 [1024, 1024, 512, 512] 6.5 6.4

Table 2 Accuracy of single models trained with the default and strong set of
augmentations at different configurations of fully-connected (FC) layers.

Condition name
EfficientNet

version
Input resolution FC layers Val. MAD (months)

baseline b0 512 × 512
[256] 6.4*

[512, 512] 6.7
[1024, 1024, 512, 512] 6.4

large CNN b4 512 × 512
[256] 6.3

[512, 512] 6.4*
[1024, 1024, 512, 512] 6.4

high-resolution b0 1024 × 1024
[256] 6.3*

[512, 512] 6.4
[1024, 1024, 512, 512] 6.4

Table 3 Comparison of the validation MAD of different training conditions and model
configurations. The final model ensemble was selected based on the best score (marked by
* in this table) in each training condition.
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Condition name EfficientNet
version

Input resolution FC layers Val. MAD (months)

no TTA TTA

baseline b0 512 × 512 [256] 6.4 6.4
high-resolution b0 1024 × 1024 [256] 6.3 6.2
large CNN b4 512 × 512 [512, 512] 6.2 6.1

ensemble 6.1 6.1

Table 4 Comparison of the best performing single models in each condition on the RSNA
BA validation set with and without applying test time augmentation (TTA). Additionally,
an ensemble composed of all models is tested.
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Supplementary Material 4: Attention maps

The attribution maps M were generated by calculating the absolute value of
the gradient of the predicted BA Ŷ w.r.t. to the input image I given sex S:

M(I) =

∣∣∣∣∣∂Ŷ∂I ′
∣∣∣∣∣
I′=I

=

∣∣∣∣∣∂f (w)(I, S)

∂I ′

∣∣∣∣∣
I′=I

(1)

The resulting image was subsequently smoothed using a Gaussian kernel with a
size 5% of the input image resolution. Subsequently, the maps were normalized
by subtracting the minimum intensity, dividing by value of the resulting 99th

percentile, and clipping all resulting values to a maximum of 1. For better
visualization of the results in the scenario of masked input images, values less
than 0.075 were excluded before applying the color map. Finally, the color
maps were blended on the original input images.

Figures 3-7 of this supplementary information show the large versions of
the selected hand X-rays presented in Figure 8 of the main manuscript with
the estimated bone ages and the attention maps from Deeplasia.
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Female with Achondroplasia

Deeplasia bone age=84.0 monthsReference bone age= 87.0 months

Rassmann et al. (2023) 
Pediatric Radiology 

Female with Pseudohypoparathyroidism

Deeplasia bone age=146.0 monthsReference bone age= 153.0 months

Rassmann et al. (2023) 
Pediatric Radiology 

Fig. 3 Attention heat maps from Deeplasia.
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Female with Hypochondroplasia

Deeplasia bone age=116.1 monthsReference bone age= 120.0 months

Rassmann et al. (2023) 
Pediatric Radiology 

Female with Intrauterine Growth Restriction

Deeplasia bone age=105.3 monthsReference bone age= 120.0 months

Rassmann et al. (2023) 
Pediatric Radiology 

Fig. 4 Attention heat maps from Deeplasia.



12 Deeplasia, Rassmann et al. (2023), Supplementary Information

Female with SHOX Mutation

Deeplasia bone age=102.7 monthsReference bone age= 100.5 months

Rassmann et al. (2023) 
Pediatric Radiology 

Female with Ullrich-Turner Syndrome

Deeplasia bone age=94.6 monthsReference bone age= 97.5 months

Rassmann et al. (2023) 
Pediatric Radiology 

Fig. 5 Attention heat maps from Deeplasia.
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Female with Noonan Syndrome

Deeplasia bone age=104.7 monthsReference bone age= 103.5 months

Rassmann et al. (2023) 
Pediatric Radiology 

Female with Silver-Russel Syndrome

Deeplasia bone age=100.8 monthsReference bone age= 114.0 months

Rassmann et al. (2023) 
Pediatric Radiology 

Fig. 6 Attention heat maps from Deeplasia.
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Female from RSNA Test Set

Deeplasia bone age=106.1 monthsReference bone age= 103.8 months

Rassmann et al. (2023) 
Pediatric Radiology 

Female from RSNA Test Set

Deeplasia bone age=112.0 monthsReference bone age= 106.5 months

Rassmann et al. (2023) 
Pediatric Radiology 

Fig. 7 Attention heat maps from Deeplasia.



Deeplasia, Rassmann et al. (2023), Supplementary Information 15

Supplementary Material 5: Comparison with
BoneXpert

Table 5 lists the performance of BoneXpert in the BA assessment of different
disorders in the German Dysplastic Bone Dataset. The performance of Deepla-
sia is also listed again for quick comparison. BoneXpert rejected 11 out of 25
(44%) of achondroplasia cases and 7 out of 30 (23%) of pseudohypoparathy-
roidism cases. The BoneXpert rejection rate for achondroplasia is in agreement
with the expected ≈ 50% (personal communication with H. H. Thodberg,
March 2023). BoneXpert performs better for cases with hypochondroplasia,
Silver-Russel syndrome, and IUGR. The performance of both software is sim-
ilar for Noonan and (the non-rejected) pseudohypoparathyroidism cases. On
the other hand, Deeplasia performs better in cases with SHOX mutation and
Ulrich-Turner syndrome, and significantly better for cases with achondroplasia.

Disorder n Deeplasia (months) BoneXpert (months)

MAD RMSE MAD RMSE

Ach 25 7.3 9.2 ([7.2, 12.7]) 13.8 17.2 ([12.6, 27.1])

HyCh 44 7.2 9.5 ([7.9, 12.0]) 7.0 9.2 ([7.6, 11.6])

Noonan 80 4.3 5.6 ([4.8, 6.6]) 4.3 5.9 ([5.1, 7.0])

PsHPT 30 7.5 8.8 ([7.1, 11.8]) 7.5 8.5 ([6.6, 11.9])

SHOX mutation 198 5.9 7.5 ([6.8, 8.3]) 6.5 8.6 ([7.8, 9.5])

Silver-Russell 69 6.2 7.7 ([6.6, 9.2]) 5.6 6.9 ([5.9, 8.3])

Ullrich-Turner 122 5.2 6.9 ([6.1, 7.9]) 6.0 7.7 ([6.8, 8.8])

IUGR 55 7.2 8.9 ([7.5, 11.0]) 6.9 9.4 ([7.9, 11.5])

Non diagnosed 79 6.3 8.1 ([7.0, 9.6]) 6.7 8.8 ([7.6, 10.4])

Table 5 Comparing the performance of Deeplasia and BoneXpert in the BA assessment
of different disorders in the GDBD. Lower MAD and RMSE errors mean higher accuracy.
The RMSE is stated with the 95% confidence interval. n refers to the number of individual
radiographs per disorder. BoneXpert rejected 11 out of 25 (44%) of achondroplasia cases
and 7 out of 30 (23%) of pseudohypoparathyroidism cases.
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