Supplementary Data

Human brown adipose tissue [¹⁵O]O₂ PET imaging in presence and absence of cold stimulus

Mueez u Din, Juho Raiko, Teemu Saari, Nobu Kudomi, Tuula Tolvanen, Vesa Oikonen, Jarmo Teuho, Hannu T Sipilä, Nina Savisto, Riitta Parkkola, Pirjo Nuutila, Kirsi A. Virtanen

Corresponding author: Kirsi A. Virtanen, Ph: +358407626564, Fax: +35822318191, email: kirsi.virtanen@utu.fi

Methods

Production of tracers

Low-energy deuteron accelerator Cyclone 3 (Ion Beam Application Inc., Louvain-la-Neuve, Belgium) was used for the production of $[^{15}O]O_2$. $[^{15}O]$ isotope was produced by the $[^{14}N]$ (d,n) $[^{15}O]$ nuclear reaction on natural nitrogen gas (1). Radiowater $[^{15}O]H_2O$ was produced using Hidex Radiowater Generator (Hidex Oy, Turku, Finland). Production of $[^{18}F]FTHA$ has been described by Saari et al., (2).

PET image reconstruction

All quantitative corrections were applied to PET image data, including detector normalization, dead-time, radioactive decay, randoms, attenuation and scatter. Images were reconstructed using iterative 3D-OSEM (GE Vue Point HD-S) reconstruction using 24 subsets and 2 iterations. All images were filtered using 6.4 mm Gaussian post-filter. Due to the presence of large in-FOV and out-FOV activity in the first frames in the $[^{15}O]O_2$ inhalation study, a clinically implemented scatter limit was applied (GE Quantitative Scatter Limit). The procedure is necessary to prevent scatter overestimation due to large in-FOV and out-FOV activity (*3*).

Supplementary Table 1.				
Study Subject	NEFA uptake rate (palmitic acid)	Energy Equivalent following complete circulatory NEFA oxidation*	DEE from MRO ₂	% of Energy from circulatory NEFA**
	µmol/100g/min	kcal/100g/day	kcal/100g/day	percentage
1	0.43	1.5	7.9	18.5
2	1.54	5.2	9.1	57.0
3	0.59	2.0	7.2	27.8
4	0.39	1.3	9.4	14.5
5	3.91	13.2	9.0	146.5
6	1.95	6.6	9.5	68.9
7	0.39	1.3	4.3	31.0
* Equation used for calculating energy equivalent Energy Equivalent: palmitic acid (kcal/100g/day) = NEFA uptake rate (μ mol/100g/min) × 1440 (min/day) × 94 (kcal/a) × 256.42 × 10 ⁻⁶ (a/umol)				
\times 1440 (mm/aay) \times 9.4 (kcar/g) \times 250.42 \times 10 $^{-}$ (g/µmor)				

** Assuming complete oxidation of palmitic acid ([¹⁸F]FTHA is palmitic acid based radiotracer)

Supplementary Fig. 1 BAT with less radiodensity (possessing more stored lipids) uses less contribution of circulatory NEFA as energy substrate and vice versa (r = 0.72; p = 0.068).

Reference List

- (1) Strijckmans K, Vandecasteele C, Sambre J. Production and quality control of 15O2 and C15O2 for medical use. *Int J Appl Radiat Isot.* 1985;36(4):279-283.
- (2) Saari T. Impaired brown adipose tissue fatty acid metabolism in obese subjects [abstract]. *Diabetologia*. 2014;57(Suppl1).
- (3) Hori Y, Hirano Y, Koshino K et al. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. *Phys Med Biol.* 2014;59(18):5593-5609.