Supplemental material to

Comparison of the octadentate bifunctional chelator DFO*-*p*Phe-NCS and the clinically used hexadentate bifunctional chelator DFO-*p*Phe-NCS for ⁸⁹Zr-immuno-PET

Danielle J. Vugts,¹ Chris Klaver,¹ Claudia Sewing,¹ Alex J. Poot,¹ Kevin Adamzek,¹ Seraina Huegli,² Cristina Mari,² Gerard W.M. Visser,¹ Ibai E. Valverde,³ Gilles Gasser,² Thomas L. Mindt,^{4,5} Guus A.M.S. van Dongen.¹

¹ VU University Medical Center, Dept. of Radiology & Nuclear Medicine, Amsterdam, The Netherlands

² University of Zurich, Department of Chemistry, Zurich, Switzerland

³ University of Basel Hospital, Division of Radiopharmaceutical Chemistry, Basel, Switzerland

⁴ ETH Zurich, Institute of Pharmaceutical Sciences, Zurich, Switzerland

⁵ Ludwig Boltzmann Institute for Applied Diagnostics, General Hospital of Vienna, Vienna, Austria

Table of contents

General analyses	2
Synthesis of DFO*- <i>p</i> Phe-NCS	2
Fig. S1 ¹ H-NMR spectrum of DFO*- <i>p</i> Phe-NCS	3
Fig. S2 ¹³ C-NMR spectrum of DFO*- <i>p</i> Phe-NCS	4
Fig. S3 HPLC spectrum of DFO*- <i>p</i> Phe-NCS at 275 nm	5
Fig. S4 HR-MS spectrum of DFO*- <i>p</i> Phe-NCS	6
Fig. S5 Uptake of ⁸⁹ Zr-DFO*-trastuzumab and ⁸⁹ Zr-DFO-trastuzumab in sternum,	
femur and knee at 24, 72 and 144 h p.i.	7
Fig. S6 Ratio of ⁸⁹ Zr-DFO-trastuzumab/ ⁸⁹ Zr-DFO*-trastuzumab at 24, 72 and	
144 h p.i.	8
Fig. S7 SE-HPLC chromatograms of ⁸⁹ Zr-DFO*-trastuzumab in 0.9% NaCl	9
Fig. S8 SE-HPLC chromatogram of ⁸⁹ Zr-DFO-trastuzumab in 0.9% NaCl	10
Table S1 In vitro stability of ⁸⁹ Zr-DFO*-trastuzumab and ⁸⁹ Zr-DFO-trastuzumab at RT	11
Summary of radiolabeling results and QC data of ⁸⁹ Zr-DFO*-cetuximab and	
⁸⁹ Zr-DFO*-rituximab	12

General analyses

¹H-NMR and ¹³C-NMR spectra were measured with a Bruker ARX-400 or Bruker ARX-500 at room temperature. Chemical shifts (δ) are reported in ppm (parts per million) and coupling constant *J* in Hz. Residual solvent peaks were used as an internal reference. Abbreviations for the peak multiplicities are s (singlet), d (doublet), t (triplet), m (multiplet), br (broad). High resolution ESI-MS spectra were recorded using a Bruker ESQUIRE-LC quadrupole ion trap instrument. Ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was performed with a Waters Acquity UPLC System with an Acquity UPLC PDA Detector and an Acquity UPLC BEH C₁₈ 1.7 µm reverse phase column (2.1 x 50 mm); flow rate: 0.6 mL/min with a gradient of A (H₂O containing 0.1% formic acid) and B (acetonitrile): t = 0 min, 5% B; t = 0.5 min, 5% B; t = 4 min, 100% B; t = 5 min, 100% B. DFO*-*p*Phe-NCS was purified by preparative HPLC on a Phenomenex Jupiter 4u Proteo 90A (21.2 x 250 mm) column at a flow rate of 20 mL/min with a gradient of A (acetonitrile; Sigma-Aldrich HPLC-grade) and B (distilled water containing 0.1% TFA): t=0 min, A 5%; t=12 min, A 15%; t=24 min, A 35%; t=26 min, A 100%; t=28 min, A 100%; t=30 min, A 15%.

Synthesis of DFO*-pPhe-NCS

DFO* (50 mg, 0.066 mmol) was dissolved in a mixture of *i*-PropOH/H₂O (4:1; 8 mL) and added dropwise to a solution of *p*-phenylenediisothiocyanate (126 mg, 0.66 mmol, 10 eq) and Et₃N (11 µL, 0.079 mmol) in CHCl₃ (8 mL). The reaction mixture was stirred at room temperature for 24 h, concentrated under reduced pressure and the resulting white solid was washed with Et₂O (4 x 10 mL). The product was purified by preparative HPLC to provide, after lyophilization, a white powder (6 mg, 10%, purity according to UPLC-MS at 275 nm >95%).¹H-NMR (600 MHz, DMSO-d6): δ (ppm) 9.64 (br m, 5 H), 7.90 (br s, 1 H), 7.77 (br s, 3 H), 7.54 (d, *J* = 12 Hz, 2 H), 7.36 (d, *J* = 6 Hz, 2 H), 3.41-3.49 (m, 10 H), 2.97-3.03 (m, 6 H), 2.55-2.60 (m, 6 H), 2.23-2.3 (m, 6 H), 1.97 (s, 3 H), 1.48-1.51 (m, 10 H), 1.36-1.39 (m, 6 H), 1.19-1.21 (m, 8 H). ¹³C-NMR (125 MHz, DMSO-d6): δ (ppm) 180.1, 172.0, 171.3, 170.2, 139.3, 132.6, 126.2, 124.6, 123.1, 47.1, 46.8, 43.7, 38.4, 29.9, 28.8, 28.0, 27.6, 27.1, 26.0, 23.6, 23.5, 20.4. Some carbon signals were not observed due to overlapping signals. HR-ESI-MS: calcd for C₄₂H₆₈N₁₀O₁₁S₂ [M+H⁺]⁺ 953.45887, found 953.45832.

The moderate yield of isolated DFO*-pPhe-NCS does not reflect low conversion of substrates or reagents but the challenging purification by HPLC due to low solubility of the compound in water and most organic solvents.

Fig. S1 ¹H-NMR spectrum of DFO*-*p*Phe-NCS

Fig. S2 ¹³C-NMR spectrum of DFO*-*p*Phe-NCS

Fig. S3 HPLC analysis of DFO*-*p*Phe-NCS at 275 nm

HR-ESI calcd for C42H68N10O11S2/z $[M+H^+]^+$ 953.45887, found 953.45832, calcd for

C42H68N10O11NaS2/z $[M+Na^+]^+$ 975.44027, found 975.44027

Fig. S4 HR-MS spectrum of DFO*-*p*Phe-NCS

Fig. S5 %ID/g in sternum, femur and knee for ⁸⁹Zr-DFO*-trastuzumab and ⁸⁹Zr-DFO-trastuzumab over time.

Fig. S6 Ratio of ⁸⁹Zr-DFO-trastuzumab/⁸⁹Zr-DFO*-trastuzumab in N87 tumor bearing nude mice at 24 h (black bar); 72 h (grey bar) and 144 h (white bar) after administration in blood, sternum, femur and knee.

Fig. S7 SE-HPLC chromatogram of ⁸⁹Zr-DFO*-trastuzumab directly after formulation (A) and after storage at 2-8°C for 24 h (B), 48 h (C), 72 h (D) and 168 h (E) in 0.9% NaCl. Left: UV at 280 nm and right: radioactive read-out.

Fig. S8 SE-HPLC chromatogram of ⁸⁹Zr-DFO-trastuzumab directly after formulation (A) and after storage at 2-8°C for 24 h (B) in 0.9% NaCl. Left: UV at 280 nm and right: radioactive read-out.

Table S1 In vitro stability of ⁸⁹Zr-DFO*-trastuzumab (A) and ⁸⁹Zr-DFO-trastuzumab (B) in 20 mM histidine+

А	20 mM Histidine/240 mM sucrose0.9% Na21°C21°C		NaCl	
			21°C	
	Radiochemical	Immunoreactive	Radiochemical	Immunoreactive
	purity (%)	fraction (%)	purity (%)	fraction (%)
0 h	99.0	98	98.0	97
24 h	98.3	96	97.3	95
48 h	96.8	95	93.5	91
72 h	94.7	93	90.7	87
168 h	84.1	81	76.5	72
В	20 mM Histidine/240 mM sucrose 21°C		0.9% NaCl	
			21°C	
	Radiochemical	Immunoreactive	Radiochemical	Immunoreactive
	purity (%)	fraction (%)	purity (%)	fraction (%)
0 h	97.8	96	98.6	97
24 h	96.5	94	75.2	nd
48 h	95.6	92	57.3	nd
72 h	92.9	92	41.1	nd
168 h	87.5	85	42.7	nd

240 mM sucrose and 0.9% NaCl at room temperature

nd = not determined

Radiochemical purity of buffer samples determined by spin filter.

Radiochemical purity of serum samples determined by SEC-HPLC.

Summary of radiolabeling results and QC data of ⁸⁹Zr-DFO*-cetuximab and rituximab

⁸⁹Zr-DFO*-cetuximab

Radiolabeling efficiency: 87%

Radiochemical purity (HPLC): 100%

(spin filter): 99.7%

Immunoreactive fraction: 99% (A431 fixated cells)

Fig. S9 SE-HPLC chromatogram of ⁸⁹Zr-DFO*-rituximab. Top: UV at 280 nm and bottom: radioactive read-out.

⁸⁹Zr-DFO*-rituximab

Radiolabeling efficiency: 89%

Radiochemical purity (HPLC): 100%

(spin filter): 99.4%

Immunoreactive fraction: 90% (SU-DHL4 fixated cells)

Fig. S10 SE-HPLC chromatogram of ⁸⁹Zr-DFO*-cetuximab. Top: UV at 280 nm and bottom: radioactive readout.