Table 1: Literature evidenced on the role of SPECT/CT and SLN assessment in breast cancer.

Author/Source/Year	Aims & Results
No. patients (n)	
Type of study	
Giżewska, Nucl Med Commun. 2017 (1)	Comparison with planar
n=153	Detection rates: SPECT/CT: 77.7% (first echelon)
Retrospective	34.6% (second echelon LN)
Borrelli et al, Eur J Nucl Med Mol Imaging. 2017 (2)	Comparison with planar
n=122	Detection rates:
Retrospective	SPECT/CT: 53.3% vs. planar: 43.4%
	Change in surgical approach: 21.3 % patients.
Zetterlund et al, Breast. 2016 (3)	SPECT/CT detection rates: 91.9% patients
n=37	
Prospective	
Pouw et al, Eur J Surg Oncol. 2016 (4)	SPECT/CT detection rates: 23.2% patients
n=284	
Retrospective	
Jimenez-Heffernan et al, J Nucl Med. 2015 (5)	Comparison with planar
n=1,182	Detection rate: SPECT/CT >planar
Retrospective	Drainage basin mismatch: 16.5%
	Change in surgical approach: 17% patients.
Tomiguchi et al, Surg Today. 2016 (6)	Comparison with planar
n=381	SPECT/CT higher detection rate
Retrospective	
Shima et al, Exp Ther Med. 2014 (7)	SPECT/CT detects level II/III LNs that may be at risk of
n=92	metastatic involvement
Retrospective	
Kraft et al, Nucl Med Rev Cent East Eur. 2013 (8)	Comparison with planar
n=320	SPECT/CT: higher detection rate
Retrospective	SPECT/CT: precise localization of all visualized SLNs
Yoneyama et al, Clin Nucl Med. 2014 (9)	Comparison with planar
n=106	Detection rates: SPECT/CT: 100% vs. planar: 97.2%
Prospective	
Brouwer et al, Eur J Nucl Med Mol Imaging. 2012 (10)	Comparison with planar
n=50	SPECT/CT detected significantly more SLNs (axillary,
Prospective	mammary, interpectoral)
Uren et al, Breast. 2012 (11)	SPECT/CT detection of SLNs: in 1 single node field -
n=741	63%, in 2 fields - 36%, and only few in 3 & 4 fields
Retrospective	

Coffey et al, Nucl Med Commun. 2010 (12)	Comparison with planar
n=187	SPECT/CT : higher detection rate
Retrospective	SPECT/CT: precise localization of all visualized SLNs
Cheville et al, Breast Cancer Res Treat. 2009 (13)	Comparison with planar
n=32	SPECT/CT characterized incidental findings & directed
Prospective	therapy to reduce long-term morbidity
vanDer Ploeg et al, Eur J Nucl Med Mol Imag. 2009 (14)	Comparison with planar
n=15	SPECT/CT: detected lymphatic drainage in 53%
Prospective	additional patients
	SPECT/CT: detected axillary SLN in 15% patients with
	known extra-axillary SLNs on planar
Gallowitsch et al, Nuklearmedizin. 2007 (15)	Comparison with planar
n=51	SPECT/CT: more accurate characterization of SLNs
Prospective	(size, depth, location).
Lerman et al, J Nucl Med. 2007 (16)	Comparison with planar; obese patients
n=220	Detection rates:
Retrospective	Total population: SPCT/CT 91% vs. planar: 78%
	Obese patients: SPECT/CT: 89% vs. planar: 72%

LN - lymph node; SLN - sentinel lymph node

Table 2: Literature evidence on the role SPECT/CT in SLN assessment in melanoma.

Author/Source/Year	Aims & Results
No. patients (n)	
Type of study	
Trinh et al, Ann Surg Oncol. 2018 (17)	Melanoma in Head and Neck
n=118	Comparison with planar
Retrospective	Detection rates: SPECT/CT: 100% vs. planar: 61.9% .
	Change in surgical approach: 81% patients
Doepker et al, Ann Surg Oncol. 2017 (18)	Comparison with planar
n=351	Detection rates: SPECT/CT: 89.6% vs. planar: 50.4%
Retrospective	
Jimenez-Heffernan et al, J Nucl Med. 2015 (5)	Comparison with planar
n=262	Detection rates: SPECT/CT > planar
Retrospective	Drainage basin mismatch: 11.1% patients
	Change in surgical approach: 37% patients
Stoffels et al, Eur J Nucl Med Mol Imaging. 2014 (19)	Comparison with planar
n=464	Median cost of SLN procedure: SPECT/CT: 1,619.7 € vs.
Retrospective	planar: 2,330.2 €; Cost savings by SPECT/CT 30.5 %
Zender et al, Am J Otolaryngol. 2014 (20)	SPECT/CT change in management: 57% patients.
n=14	
Retrospective	
Kraft et al, Nucl Med Rev Cent East Eur. 2013 (8)	Comparison with planar
n=161	SPECT/CT: significantly higher detection rate
Retrospective	SPECT/CT: precise localization of all visualized SLNs.
Fairbairn et al, J Plast Reconstr Aesthet Surg. 2013 (21)	Comparison with planar
n=32	Similar diagnostic accuracy
Retrospective	Change in surgical approach: > 30% patients
Vuthaluru et al, Am J Ophthalmol. 2013 (22)	Melanoma in eyelid
n=12	SPECT/CT accurately localization of SLNs: 11/12 patients
Prospective	
Stoffels et al, JAMA. 2012 (23)	Comparison with planar
n=464	Detection rates: SPECT/CT > planar
Retrospective	Local relapse rate: SPECT/CT cohort 6.8% vs. standard
	cohort 23.8%
	4-year DFS: SPECT/CT 93.9% vs planar 79.2%
Kraft et al, Nucl Med Rev Cent East Eur. 2012 (24)	Comparison with planar
n=113	Detection rates: SPECT/CT: 94.7% vs. planar: 88.5%
Retrospective	

Retrospectivemainly IV andVeenstra et al, Ann Surg Oncol. 2012 (26)Comparisonn=35Similar detectProspectiveSPECT/CT: lo approach: >3	with planar ction rates ocalization & change in surgical 30% patients
Veenstra et al, Ann Surg Oncol. 2012 (26)Comparisonn=35Similar detectProspectiveSPECT/CT: lo approach: >3	with planar ction rates ocalization & change in surgical 30% patients
n=35 Similar detector Prospective SPECT/CT: lo approach: >3	ction rates ocalization & change in surgical 30% patients
Prospective SPECT/CT: lo approach: >3	ocalization & change in surgical 30% patients
approach: >3	30% patients
	with planar
Nielsen et al, Eur J Nucl Med Mol Imaging. 2011 (27)Comparison	with planal
n=307 SPECT/CT de	tection rate: additional 10% patients
Retrospective	
Klode et al, J Eur Acad Dermatol Venereol 2011 (28) Melanoma in	n Head & Neck
n=48 Comparison	with planar
Retrospective SPECT/CT: be	etter postoperative aesthetic results, lower
morbidity; si	gnificantly shorter operating time with
subsequent	reduced costs
Vermeeren et al, Head Neck. 2011 (29) Melanoma in	n Head & Neck
n=38 SPECT/CT de	tection rate: additional LNs in 16% patients
Retrospective Change in su	irgical approach: >35% patients
van der Ploeg et al, Ann Surg Oncol. 2009 (30) Most (involv	ed) SLNs located in infero-medial & central
n=50 zones	
Retrospective High frequer	ncy of pelvic second-tier nodes - need for deep
groin dissect	ion in most patients with positive SLNs.
van der Ploeg, Ann Surg Oncol. 2009 (31) Comparison	with planar
n=85 Detection ra	tes: SPECT/CT > planar
Retrospective Change in su	rgical approach in 35% patients; questionable
value in 22%	& no value in 42% patients
Shihara et al, Int J Clin Oncol. 2006 (32) Comparison	with blue dye
n=35 SPECT/CT: hi	igher detection rates in neck area
Retrospective	
Even-Sapir et al, J Nucl Med. 2003 (33) Comparison	with planar
n=34 SPECT/CT: hi	igher detection rates
Prospective	

SLN – sentinel lymph node DFS – disease free survival Table 3: Literature evidence on the role of pre-ablation diagnostic SPECT/CT in differentiated thyroid cancer

Author/Source/Year	Results	
No. patients (9)		
Type of study		
Avram et al, J Clin Endocr Metab, 2015 (34)	SPECT/CT (combined with stimulated serum thyroglobulin)	
n=220	Change in risk stratification: 15% patients	
Prospective	 Change in intended management: 31% patients 	
Agrawal K et al, Ind J Nucl Med, 2015 (35)	SPECT/CT:	
n=83	Detection of additional metastases: cervical nodes 29% &	
Prospective	distant location 10% patients	
	Change in TNM stage: 9.6% patients	
	Change in risk stratification: 13.2% patients	
	Change in intended management: 38.5% patients	
Avram et al, J Clin Endocr Metab, 2013 (36)	SPECT/CT:	
n=320	Detection of additional cervical metastases: 38% patients	
Prospective	under 45y & 24% patients over 45y of age	
	Detection of additional distant metsastases: 4% patients	
	under 45y & 10% patients over 45y of age	
Wong et al, Am J Roentgenol, 2010 (37)	SPECT/CT:	
n=48	 Additional findings: 40% patients 	
Retrospective	 Change in post-surgical stage: 21% patients 	
	 Change in intended management (RAI therapy dose):58% patients 	

RAI – radioactive lodine

Table 4: Literature evidence on the role of SPECT/CT after radioiodine treatment for ablation or for recurrent/metastatic differentiated thyroid cancer

Author/Source/Year No. patients (n) Type of study	Results
Hassan et al, Europ Thyroid, 2015 (38) n=67 (ablation 29; therapy 38) Retrospective	 SPECT/CT: Reduced number of equivocal foci from 17 to 1 Change in stage: 20.8% patients Change in management: 14% patients
Grewal et al, J Nucl Med, 2010 (39) n=148 (ablation 109; therapy 39) Retrospective	 SPECT/CT: reduced number of equivocal foci by 70% spared further CT/MR: 6.6% patients change in risk stratification: 6.4% patients post-ablation similar performance post-ablation & post-therapy.
Kohlfuerst et al, Eur J Nucl Med Mol Imag, 2009 (40) n=53 (ablation 23; therapy 18) Prospective	 SPECT/CT: Unexpected lesions: 28.9% Overall diagnostic impact: 63.6% patients Change in N status: 36.4% patients Change in M status: 21.1% patients Change in management: 24.4% patients
Spanu et al, J Nucl Med, 2009 (41) n=117 (ablation 108; therapy 9) Prospective	 SPECT/CT: Overall diagnostic impact: 67.8% patients Change in management: 35.6% patients Sparing unnecessary imaging/treatment: 20.3% patients.
Wang et al, Clin Imaging, 2009 (42) n=94 (not specified)	 SPECT/CT: Better localization of uptake: 21% patients Overall diagnostic impact: 12.8% patients Change in management: 23.4% patients
Wong et al, Am J Roentgenol, 2008 (43) n=56 (ablation 52; therapy 4) Retrospective	 SPECT/CT: diagnostic impact: cervical nodes 40.8% & distant foci 100% increase in diagnostic confidence in 70.7% lesions
Tharp et al, Eur J Nucl Med Mol Imag, 2004 (44) n=71 (not specified) Retrospective	 SPECT/CT: diagnostic value: 57% patients (including 27% patients with equivocal cervical uptake & 13% patients with distant foci)

Table 5: Literature evidence on the role of SPECT/CT in Neuroendocrine Neoplasms

Author/Source/Year	Aims & Results
No. patients (n)	
Tracer & Type of tumor	
Type of stud,	
Kunikowska et al, Clin Nucl Med 2017 (45)	Comparison with Ga-DOTATATE PET/CT:
n=68	SPECT/CT : sensitivity: 82% , specificity 69 %, PPV 92%, NPV
99mTc-HYNICTOC, NET	47%, accuracy 79%
Retrospective	PET/CT: sensitivity 100%, specificity: 85%, PPV: 97%, NPV:
	100%, accuracy: 97%
	Detection rate: SPECT/CT < PET/CT
Trogrlic et al, Nuklearmedizin. 2017 (46)	Comparison with planar+ SPECT:
n=65	SPECT/CT: Sensitivity 88.9, specificity 79.3,
99mTc-HYNICTOC, NET	Accuracy: SPECT/CT 88.9% vs SPECT 73.8%
Retrospective,	SPECT/CT: change in management 16.9%
Etchebehere et al, J Nucl Med. 2014 (47)	Comparison Ga-DOTATATE PET/CT & MR:
n=19	Sensitivity: 60% SPECT/CT, 96% PET/CT, 72% MR
99mTc-HYNICTOC, GEP	Specificity: 99% SPECT/CT, 97% PET/CT, 100% MR
Prospective	PPV: 96% SPECT/CT, 94% PET/CT, 100% MR
	NPV: 83% SPECT/CT, 98% PET/CT, 88% MR
	Accuracy: 86% SPECT/CT, 97% PET/CT, 91% MR
Spanu et al, Am J Nucl Med Mol Imaging. 2017 (48)	Comparison with CI:
n=104	Sensitivity: 91.4% SPECT/CT vs 71.4% CI
111In-pentetreotide, GEP	Accuracy: 94.2% SPECT/CT vs 80.8% CI
Retrospective	Change in management: 27.9% SPECT/CT vs 9.6% CI
Ait et al, Nucl Med Commun. 2017 (49)	Comparison with planar:
n=13	SPECT/CT: better localization & quantification
111In-pentetreotide, Tumour of pancreas	
Retrospective	
Ruf et al, J Nucl Med. 2016 (50)	Diagnostic SPECT/CT; Comparison with CT:
n=31	Detection rate: dSPECT/CT 78-89% vs. CT 63-85%
111In-pentetreotide, GEP	dSPECT/CT change in management 25.8% patients
Prospective	
Lee et al, Nucl Med Mol Imaging. 2015 (51)	Comparison with Ga-DOTATATE PET/CT:
n=13	Sensitivity: 54% SPECT/CT vs. 100% PET/CT
111In-pentetreotide, NET	
Prospective	

Chiaravalloti et al, Anticancer Res. 2015 (52)	Comparison with ceCT:
n=81	Primary/local recurrence
111In-pentetreotide , Lung carcinoid	Sensitivity 96% SPECT/CT vs. 87.5% CT
Prospective	Specificity 92% SPECT/CT vs. 97% CT
	Distant mets:
	Sensitivity 85.5% SPECT/CT vs. 75.2% CT
	Specificity 84.6% SPECT/CT vs. 90.5% CT
Sainz-Esteban et al, Nucl Med Commun. 2015 (53)	Comparison with planar:
n=107	Detection rate: 94.4% SPECT/CT vs 65.6% planar
111In-pentetreotide, NET	SPECT/CT: 87.8% sensitivity,96.6% specificity
Retrospective	Change management in 11% patients
Schreiter et al, Radiol Oncol. 2014 (54)	Comparison with Ga-DOTATATE PET/CT:
n=123	PET/CT is better than SPECT/CT
111In-pentetreotide, NET	
Retrospective	
Wong et al, Acad Radiol. 2010 (43)	Comparison with planar:
n=49	SPECT/CT improved lesion localization: 61.8%
111In-pentetreotide, GEP	SPECT/CT changed lesion classification: 28.1%
Prospective	SPECT/CT diagnostic value: 28.6%
Apostolova et al , Ann Nucl Med. 2010 (55)	Comparison with planar:
n=25	up-staging 18% lesions & down-staging 12% lesions
111In-pentetreotide, NET	
Prospective	
Castaldi et al, Radiol Med. 2008 (56)	Comparison with planar:
n=54	Change in management: 26% patients
111In-pentetreotide, NET	
Retrospective	
Perri et al, Q J Nucl Med Mol Imaging. 2008 (57)	Comparison with SPECT:
n=81	Detection rate:
111In-pentetreotide, NET	Patient analysis: 92.6% SPECT/CT vs. 79% SPECT
Retrospective	Lesion analysis 96.4% SPECT/CT vs. 81.1% SPECT
Hillel et al, Clin Radiol. 2006 (58)	Comparison with planar:
n=29	Change in management: 64% patients
111In-pentetreotide, NET Prospective	
Krausz et al, Clin Endocrinol 2003 (59)	Comparison with planar:
n=71	Change in diagnosis: 32% patients
111In-pentetreotide, NET (n=67) & MTC (n=4)	Change in management: 14% patients
Retrospective	
Chang et al, Cancer Imaging. 2016 (60)	Comparison with Ga-DOTATATE PET/CT:
n=23	Similar performance
123I-mIBG, Pheochromocytoma	

Prospective	
Kroiss et al, Ann Nucl Med. 2017 (61)	Comparison with 18F-DOPA PET/CT:
(n=10)	Detection rates: 20.0% SPECT/CT vs. 100% PET/CT
123I-mIBG, Pheochromocytoma	Sensitivity: 11.1% SPECT/CT vs. 69.2% PET/CT
Prospective	
Nakamoto et al, Clin Nucl Med. 2016 (62)	SPECT/CT quantification
(n=68)	
123I-mIBG, Pheochromocytoma	
Prospective	
Kroiss, Eur J Nucl Med Mol Imaging. 2015 (63)	Comparison with Ga-DOTATATE PET/CT:
(10)	Detection rate: 20.0% SPECT/CT vs.100% PET/CT
123I-mIBG, Pheochromocytoma	Sensitivity: 6.9% SPECT/CT vs. 100% PET/CT
Prospective	
Derlin et al, Clin Nucl Med. 2013 (64)	Comparison with MRI:
(n=22)	SPECT/CT: sensitivity 87.5%, specificity 93.8%, accuracy 92.5%
123I-mIBG, Pheochromocytoma	MRI: sensitivity 87.5%, specificity 96.9%, accuracy 95%.
Prospective	SPECT/MRI fusion superior to both SPECT/CT and MRI
	(sensitivity 100%)
Fukuoka et al, Clin Nucl Med. 2011 (65)	Comparison with planar:
(n=16)	Detection rate – lesion-based analysis:
123I-mIBG and 131I-mIBG (post-therapy),	-123I-mIBG SPECT/CT: additional 20%
Pheochromocytoma	-131I-mIBG SPECT/CT: additional 5%
Prospective	Additional diagnostic information:
	-123I-mIBG SPECT/CT: 81% studies
	-131I-mIBG SPECT/CT: 53% studies
Meyer-Rochow et al, Ann Surg Oncol. 2010 (66)	Additional information from SPECT+CT (correlative imaging) :
(n=22)	6 patients
123I-mIBG, Pheochromocytoma	
Prospective	

NET – neuroendocrine tumour; GEP – Gastro-entero-pancreatic tumour; PPV – positive predictive value; NPV – negative predictive value CI – conventional imaging; CeCT – contrast enhanced CT

Table 6: Literature evidence on the performance indices of bone SPECT/CT in cancer patients.

Author/Source/Year	Sensitivity (%)	Specificity (%)	Significance
No. patients (n)			(p < 0.05)
Gold standard			
Zhao et al, Skel Radiol, 2010. (67)	SPECT 82.5	SPECT 66.7	Specificity & accuracy
n=125	SPECT/CT 66.7	SPECT/CT 98.4	
Biopsy & radiological follow-up			
Palmedo et al, Eur J Nucl Med Mol Imag,	WBS 93	WBS 78	Specificity
2014. (68)	SPECT 94	SPECT 71	
n= 308	SPECT/CT 97	SPECT/CT 94	
Clinical follow-up			
Zhang et al, Nuklearmedizin, 2015 (69)	SPECT 70.9	SPECT 94.9	NA
n= 65	SPECT/CT 100	SPECT/CT 97.4	
Pathology & clinical follow-up			
Haraldsen et al, Clin Physiol Funct Imag,	WBS 87	WBS 63	Specificity
2016. (70)	SPECT 87	SPECT 71	
n=73	SPECT/ IdCT 79	SPECT/ IdCT 63	
MRI	SPECT/ dCT 84	SPECT/ dCT 83	
Jambor et al, Acta Oncol 2016. (71)	WBS 62	WBS 50	Accuary of F-18-PET &
n= 53	SPECT 74	SPECT 44	wbMRI+DWI > WBS,
consensus reading & clinical and	SPECT/CT 85	SPECT/CT 5	SPECT & SPECT/CT
imaging follow-up	F-18-PET 93	F-18-PET 6	
	wbMRI+DWI 91	wbMRI+DWI 4	
Fonager et al, Am J Nucl Med Mol Imag,	WBS 78	WBS 90	NS
2017. (72)	SPECT/CT 89	SPECT/CT 100	
n= 37	F-18-PET/CT 89	F-18-PET/CT 90	
Clinical & imaging follow-up			
Mahaletchumy et al, World J Nucl Med,	WBS 43	WBS 85	NA
2017. (73)	SPECT 58	SPECT 92	
n= 85	SPECT/CT 78	SPECT/CT 94	
Correlative imaging & clinical follow-up			

WBS – whole body planar bone scan NA – not available DWI – diffusion weighed imaging **Table 7:** Literature evidence on the role of SPECT/CT for planning or assessment of trans-arterial radioembolization (TARE)

Author/Source/Year	Aims & Results
No. patients (n)	
Type of study	
Dittmann et al, J Nucl Med. 2018 (74)	Comparison with planar.
n=50	SPECT/CT: significantly lower hepatopulmonary shunts,
Prospective	substantial shunting in 4% cases (vs. 20% for planar).
Yue et al, Med Phys. 2016 (75)	Comparison with PET/CT.
n=15	Congruent results of 90Y Bremsstrahlung SPECT/CT and
Prospective	90Y PET/CT in all cases
Erxleben et al, Acta Radiol. 2016 (76)	Comparison with planar.
n=316	SPECT/CT: significantly lower hepatopulmonary shunts
Retrospective	
Theysohn et al, PLoS One. 2015 (77)	Comparison with planar.
n=852	SPECT/CT: unexpected extrahepatic uptake: 6.5%
Retrospective	patients
Gates et al, J Nucl Med. 2015 (78)	Comparison with planar.
n=174	SPECT/CT: additional shunts identification
Retrospective	
Ilhan et al, J Nucl Med. 2015 (79)	Wide variation of uptake among liver metastases
n=502	subtypes
Retrospective	
Spreafico et al, Cardiovasc Intervent Radiol. 2015 (80)	Comparison with planar.
n=100	SPECT/CT: identifies accessory branches in 19 lesions/17
Retrospective	patients, thus changing the embolization procedure
van den Hoven et al, Cardiovasc Intervent Radiol. 2014	SPECT/CT identified aberrant hepatic arteries: 34%
(81)	patients
n=110	
Retrospective	
Zade et al, Nucl Med Commun. 2013 (82)	Comparison with PET/CT.
n=35	Congruent results of 90Y Bremsstrahlung SPECT/CT and
Prospective	⁹⁰ Y PET/CT: 97.14% cases
Padia et al, J Vasc Interv Radiol. 2013 (83)	Comparison with PET/CT.
n=13	⁹⁰ Y PET/CT: higher spatial resolution & lower scatter
Prospective	

Burgmans et al, Eur J Radiol. 2012 (84)	Comparison with planar.
n=79	Detection rate of hepatic falciform artery: SPECT/CT:
Retrospective	13.3% vs. digital subtraction angiography: 11.9% vs. CT
	arteriography: 52.3%
Ahmadzadehfar et al, Eur J Nucl Med Mol Imaging. 2012	Comparison with planar.
(85)	Prediction of GI ulcers: SPECT/CT sensitivity 87%,
n=188	specificity 100%, PPV 100%, NPV 99%, accuracy 99%
Retrospective	
Lauenstein et al, Rofo. 2011 (86)	Comparison with planar.
n=27	SPECT/CT only detected perfusion of occluded liver
Prospective	segment: 59% patients
Hamami et al, J Nucl Med. 2009 (87)	Comparison with planar+SPECT.
n=58	Detection of GI shunting:
Prospective	SPECT + CT fusion: sensitivity 100%, specificity 94%,
	accuracy 96%
Denecke et al, Eur Radiol. 2008 (88)	Comparison with SPECT.
n=22	Detection of GI shunting: SPECT/CT 31% vs. SPECT 15%
Prospective	patients

GI - gastrointestinal PPV – positive predictive value; NPV – negative predictive value

Table 8: Literature evidence on the role of bone SPECT/CT in benign bone conditions.

Author/Source/Year	Aim & Results
No. patients (n)	
Reason for study, Anatomical region	
Type of study	
Russo VM et al, World Neurosurg, 2017 (89)	Compare SPECT/CT patterns with CT joint degeneration &
n=99	Modic changes and MRI disc abnormalities
LBP, SPECT/CT of spine	SPECT/CT: localization of active facet joints, better LBP
Prospective	management
	SPECT/CT patterns: no correlation with degree of CT
	degeneration >40%
	SPECT/CT uptake: high agreement with Modic changes
Hudyana et al, Eur J Nucl Med Mol Imag, 2016 (90)	Accuracy for diagnosis of loosening of fixation material in back
n=48	pain after surgery
s/a lumbar arthroscopy with screw insertion, SPECT/CT	High sensitivity & specificity for exclusion of screw loosening
of spine	SPECT/CT identified other causes of recurrent LBP
Retrospective	
Sumer J et al, Nucl Med Comm, 2013 (91)	Value in LBP after surgery, compared to planar+SPECT
n=37	SPECT/CT: significantly higher accuracy; procedure of choice
s/a lumber fusión surgery; SPECT/CT of spine	
Retrospective study	
Ha S et al 2015 (92)	Diagnostic performance with regard to lesion type, compared
n=50	to MRI
Feet pain, SPECT/CT of feet & ankle	SPECT/CT & MRI: comparable diagnostic performance
Retrospective	SPECT/CT & MRI: complementary techniques
Chicklore S et al, Nucl Med Comm, 2013 (93)	Diagnostic accuracy for impingement syndrome & ST
n=209	pathology; compared to MRI & US
Feet pain; SPECT/CT of feet & ankle	SPECT/CT similar performance
Retrospective	
Huellner MW et al, PLoS One, 2013 (94)	Diagnostic accuracy & interobserver agreement compared to
n=32	MRI, CT, X-rays, planar BS
Wrist pain; SPECT/CT of hands & wrists	SPECT/CT: most helpful modality
Retrospective	MRI: better characterization of lesion type
	Good interobserver agreement (accuracy, localization,
	etiology)
Schleich FS et al, Eur J Nucl Med Res, 2012 (95)	Diagnostic, therapeutic impact: compared to X-rays & planar BS
n=51	SPECT/CT: highest lesion detectability; impact on patient
Wrist pain; SPECT/CT of hands & wrists	management
Retrospective	
Dobrindt O et al, BMC Med Imaging, 2015, (96)	Compared to 3-phase BS + SPECT
n=50	SPECT/CT: higher diagnostic accuracy in (a)septic loosening
Painful THR & TKR; SPECT/CT of hips or knees	
Retrospective	
Chew CG et al, Annals Nucl Med, 2010, (97)	SPECT/CT arthrography for evaluation of mechanical loosening
n=117	of prostheses.
Patello-femoral disorders; SPECT/CT of knees	

Retrospective	SPECT/CT of hip: better for acetabular cup but not for femoral stem. SPECT/CT of knee: better in femoral and tibial component
Slevin O et al, 2017 (98) n=104 Patellofemoral disorders; SPECT/CT of knees Retrospective	<i>Tracer distribution patterns in patellar resurfacing</i> SPECT/CT of value for evaluation of patello-femoral disorders after TKA

LBP – Low back pain THR – Total hip replacement TKR – Total knee replacement TKA – Total knee arthroplasty ST – soft tissues BS – bone scan **Table 9:** Literature evidence on the role of SPECT/CT in musculo-skeletal infections.

Author/Source/Year	Aims & Results
No. patients (n)	
Tracer, Clinical indication	
Type of study	
Horger et al, EJNM 2003 (99) (n=27)	Compared to BS::
Post-traumatic OM, 99mTc-AGA	Specificity: SPECT/CT 89% vs. SPECT 78%
	Same sensitivity 100%.
	SPECT/CT: better diagnostic accuracy to differentiate OM from STI
Filippi et al, JNM 2006; (100)	SPECT/CT: accurate localization of all positive foci.
n=28	SPECT/CT: improved diagnosis 36% patients (ST vs. bone; complicated
OM/infected joint prosthesis, 99mTc-WBC	bone after trauma; synovial infection without prosthesis involvement)
Prospective	
Bar-Shalom et al, JNM 2006 (101)	Compared to planar + SPECT:
n=32, Ga-67 (n=21); In-WBC (n=11)	SPECT/CT: role in diagnosis, localization, extent of disease
Mixed population	SPECT/CT contribution: WBC > Ga
Retrospective	
Horger et al, Arch Orth Surg 2007 (102)	Compared to 3-phase planar + SPECT:
n=31	Specificity SPECT/CT 86%; vs. BS 50%;
Mixed population, 99mTc-HEDP	Same sensitivity 78%.
Prospective	SPECT/CT avoids false positives & equivocal findings
Sathekge et al, Annals Nucl Med 2018 (103)	Compared to planar + SPECT:
n=184	SPECT/CT sensitivity 99%, specificity 95%, PPV 93%, NPV 99%,
OM vs. STI, 99mTc-Ubi	accuracy 95%
	SPECT/CT: improved diagnostic confidence in 49% patients; better
	interobserver agreement
Djekidel et al, Clin Nucl Med 2011 (104)	Compared to planar + SPECT:
n=43	SPECT/CT: sensitivity 88%, specificity 85%, PPV 84%, NPV 89%.
Mixed population, In111- & Tc99m-WBCs	Increase in correct lesion location.
Retrospective	Improved overall reader confidence.
	No difference between 111In- & 99mTc-WBCs SPECT/CT
	No difference before & after treatment
Filippi et al, JNM 2009 (105)	Compared to 3-phase BS:
n=17	SPECT/CT change in interpretation: 53% patients
Diabetic Foot, 99mTc-WBC	SPECT/CT did not contribute in negative scan
Heiba et al, J Foot Ankle Surg 2010 (106)	DI - 2 steps: BS/WBCs-SPECT/CT ± WBCs/Bone marrow SPECT/CT
n=213	Diagnostic accuracy: DI > WBCs/BS; DI SPECT/CT > DI planar/SPECT
Diabetic foot, 99mTc-MDP & 111In WBC	only.
	DI SPECT/CT: improves detection & discrimination of STI vs. OM

Erdman et al, Diab Care 2012 (107)	SPECT/CT based CSI:
n=77	Favorable outcome: CSI 0 = 92% ; CSI ≥7 = 25%
Diabetic foot, 99mTc-WBC	SPECT/CT: visual < CSI for predicting outcome
Retrospective	
Aslangul et al, Diab Care 2013 (108)	Diagnosis of OMs & treatment tailoring; combined with biopsy:
n=55	SPECT/CT + biopsy: sensitivity 88%; specificity 94%, PPV 92%, NPV
Diabetic foot, Ga-67	91%
Prospective	SPECT/CT + biopsy: spared antibiotics 55% cases
Heiba et al, NM Comm 2013 (109)	Compared to CI in different population: SPECT/CT (n=232) & CI (n=227)
n=227	DI SPECT/CT: more accurate diagnosis of OM, STI, other bony
Diabetic foot, 99mTc-MDP & 111In WBC	pathology
Retrospective	DI SPECT/CT: associated with shorter hospitalization length
•	
Vouillarmet et al, Diab Med 2014 (110)	Monitoring treatment response; compared to 3-phase BS & X-rays)
n=22	Prediction of OM relapse after antibiotics:
Diabetic foot, 99mTc-WBC	SPECT/CT: sensitivity 100%, specificity 92%, PPV 72%, NPV 100%
Retrospective	Better than X-rays & BS
-	Negative WBC-SPECT/CT useful in guiding therapy.
La Fontaine et al, Wound 2016 (111)	Compared to MRI in different population: SPECT/CT (n=52) & MRI
n=110	(n=58)
Diabetic foot, 99mTc-WBC	SPECT/CT: sensitivity 89%, specificity 35%, PPV 74%, NPV 60% vs. MRI:
Retrospective	sensitivity 87%, specificity 37%, PPV 74%, NPV 58% (p NS)
Lazaga et al, Int Wound J 2016 (112)	Monitoring response to treatment
n=20	SPECT/CT: sensitivity 90%, specificity 56%, PPV 69%, NPV 83%.
Diabetic foot, 99mTc-WBC	Useful to determine treatment outcomes
Retrospective	
Vouillarmet et al, Diabetologia 2017 (113)	Monitoring response to treatment (at 6 & 12 weeks)
n=45	SPECT/CT (12 weeks): sensitivity 100%, specificity 56%, PPV 46%, NPV
Diabetic foot, 99mTc-WBC	100%.
Retrospective	SPECT/CT predicted remission at end of treatment.
Fuster et al, Clin Nucl Med 2012 (114)	Compared to BS & FDG-PET/CT
n=34	BS & Ga-67 SPECT/CT: sensitivity 78%, specificity 81%, PPV 82%, NPV
Spondylodiskitis, 67Ga	76%, accuracy 79%.
Prospective	FDG-PET/CT better performance, concordance with SPECT/CT
Tamm et al, Can Assoc Radiol J (115)	Compared to BS & MRI
n=34	BS & Ga-67 SPECT/CT vs. MRI: same sensitivity (91%), specificity and
Spondylodiskitis , 99mTc-MDP and/or 67Ga	PPV (100%); similar NPV (94% vs. 80%) and accuracy (97% vs 95%)
Retrospective	
Lazzeri et al, Clin Nucl Med 2010 (116)	Early diagnosis; compared to planar & SPECT
n=72	SPECT/CT vs. SPECT: similar sensitivity (94% vs. 92), same specificity
Spondylodiskitis, 111In-Biotin	(92%).

Prospective	SPECT/CT correctly localized infection to bone, ST or both: 22% cases
Chakraborty et al, Ind JNM 2013 (117)	Compared to 3-phase BS
n=20	SPECT/CT localized lesions to specific bone in 50% & showed
OM of base of skull, 99mTc-MDP	destructive changes in 25%
Retrospective	
Sharma et al, Jpn J Radiol 2013 (118)	Compared to planar, SPECT & CT
n=13	AUC for SPECT/CT 0.977 vs. SPECT 0.909, CT 0.886, planar 0.614
OM of base of skull, 99mTc-MDP	Accuracy SPECT/CT 92%, SPECT 85%, CT 77%, planar 46%
Retrospective	
Bolouri et al, EJNMMI 2013, (119)	Compared to SPECT & orthopantomography (OPT)
n=42	SPECT/CT sensitivity 100%, specificity 86%, accuracy 98 %
OM of jaw, 99mTc-MDP	SPECT: 100%, 71%, 95%; CT 77%, 86%, 79%; OPT 59%, 100%, 66 %
	SPECT/CT most useful but not cost justified
Graute et al, EJNMMI 2010 (120)	Compared to 3-phase planar
n=31	SPECT/CT: sensitivity 89%, specificity 73%, PPV 57%, NPV 94%
Low grade joint infection, 99mTc-AGA	SPECT/CT improvement in diagnosis, localization & extent
Retrospective	
Kim et al, J Comput Assit Tomogr 2014	Compared to 2-phase BS
(121)	SPECT/CT: sensitivity 93%, specificity 93%, PPV 94%, NPV 92%,
n=164	accuracy 93%.
Infected hip & knee prostheses, 99mTc-	Higher impact of SPECT/CT on sensitivity & specificity for hip vs. knee
WBC	prosthesis infections.
Retrospective	

OM – osteomyelitis ST – soft tissue STI – ST infection PPV – positive predictive value; NPV – negative predictive value CI – conventional imaging DI – dual isotope CSI - Composite Severity Index CSI

OPT - orthopantomography

Table 10: Literature evidence on the role of SPECT/CT in soft tissue and visceral infections

Author/Source/Year	Aims & Results
No. patients (n)	
Tracer, Clinical indication	
Type of study	
Bar-Shalom et al, J Nucl Med 2006 (101)	Compared to SPECT
n=50	SPECT/CT: diagnosis & localization in 48% & extent in 43%
FUO; mixed STI (67Ga n=26); VGI (111In-WBC n=24)	patients
Retrospective	Excluded infection in 4 sites (67Ga bowel uptake)
	Contribution: 111In-WBC > 67Ga
Lou et al, Nucl Med Comm 2010 (122) n=11	SPECT/CT: high accuracy in clinically suspected cases
99mTc-WBC; VGI	
Retrospective	
Khaja, Clin Imag 2013 (123)	Compared to CTA & Software fusion
n=20	Sensitivity, specificity, accuracy, PPV, NPV:
111In- WBC; VGI	WBC: 75/100/80/100/50%
Retrospective	CTA: 88/50/80/88/50%
	SPECT/CTA fusion: 94/50/85/88/67%
	Software fusion: better diagnostic confidence; impact on
	outcome
Erba et al, Eur J Nucl Med Mol Imag 2014 (124)	Compared to SPECT:
n=55 99mTc-WBC; Late & low grade VGI	SPECT/CT vs. SPECT: sensitivity 100% vs. 85%; specificity 100 % vs. 63%
Prospective	SPECT/CT decreased FPs in 37% patients
Erba et al, J Nucl Med 2012 (125)	Compared to echo
n=131	SPECT/CT sensitivity 90%, NPV 94%, specificity & PPV 100%
99mTc-WBC; IE	Main value in negative or difficult-to-interpret echo
Prospective	
Lauridsen et al, Int J Cadiovasc Imag 2017 (126)	Compared to FDG
n=55	Clinical utility score: FDG-PET/CT > WBC-SPECT/CT
99mTc-WBC; extracardiac sites of IE	
Litzler et al, J Nucl Med 2010 (127)	Monitoring response to antibiotic treatment
n=13	SPECT/CT: extent & precise location of infection
99mTc-WBC; Infected CIED	SPECT/CT: better therapeutic strategies.
Erba et al, JACC 2013 (128)	SPECT/CT confirmed diagnosis, defined extent & detected
n=63	associated complications
99mTc-WBC; Infected CIED	SPECT/CT sensitivity: 94%; NPV 95%
Prospective	
Heiba et al, Nucl Med Comm 2017 (129)	Compared to planar
(n=21)	DI- SPECT/CT: higher sensitivity, specificity & diagnostic
(= =)	

Hung et al, Infect Dis 2017 (130)	Compared to FDG-PET/CT
n=58	⁶⁷ Ga-SPECT/CT: high FN rate (55%) vs. FDG-PET/CT high FP
67Ga; FUO	rate (44%)
	Sensitivity: ⁶⁷ Ga-SPECT/CT 79% vs. FDG-PET/CT 45%
	Clinical contribution: ⁶⁷ Ga-SPECT/CT 72% vs. FDG-PET/CT 55%
Nowosinska et al, World J Nucl Med (131)	SPECT/CT contributory: 80% kidneys in ESRF & 33% renal
n=18	transplant patients.
67Ga; Infected kidneys in ESRF & renal transplant	SPECT/CT: 44% patients better location and/or extent;
Retrospective	differentiating physiological from pathological uptake.

FUO – Fever of unknown origin VGI – vascular graft infection IE – infective endocarditis CIED - cardiac implantable electronic devices ESRF – end stage renal failure CTA – CT angiography FP –False positive; FN – False negative DI – dual isotope **Table 11:** Literature evidence on the role of SPECT/CT in primary hyperparathyroidism.

Author/Source/Year	Aim & Results
No. patients (n)	
Type of study	
Gayed et al, J Nucl Med 2005 (132)	Impact on Diagnosis
n=48	SPECT/CT: diagnosis of additional 2% PTA
Retrospective	SPECT/CT localization: additional 8% (including 2 ectopic)
Krausz et al, World J Surg 2006 (133)	Preoperative localization
n=36	SPECT/CT localized 14 PTAs (10 ectopic & 4 in distorted
Retrospective	neck anatomy)
	Role in planning surgery: 39% patients.
Lavely et al, J Nucl Med 2007 (134)	Comparison of various acquisition protocols
n=110	Best diagnostic accuracy: early SPECT/CT + any delayed
Prospective	imaging
Neumann et al, J Nucl Med 2008 (135)	Preoperative localization
n=61 Prospective	SPECT/CT vs. SPECT: similar sensitivity (70% vs. 71%); higher specificity (96% vs. 48%)
Patel et al, Clin Radiol 2010 (136) n=63	Preoperative localization; compared to US Detectability rate: SPECT/CT 90% vs. US 64%.
Retrospective	Concordant findings on SPECT/CT & US: 59%.
	US + SPECT/CT preoperative PTA localization: sensitivity
	95%; accuracy 91%.
Pata et al, Thyroid 2010 (137)	Diagnosis (specifically in multinodular goitre); compared to
n=33	SPECT
Retrospective	SPECT/CT localization (lateralization & neck quadrant):
	sensitivity 94 & 88%; specificity 93 & 96%; PPV 94 & 88%.
	Mean time of surgery: SPECT/CT 38 min vs. SPECT 56 min.
Pata et al, Ann Surg Oncol 2011 (138)	Cost-analysis for preoperative localization; compared to
n=55 Retrospective	SPECT Mean time of surgery: SPECT/CT 36 min vs. SPECT 62 min.
Netrospective	SPECT/CT decrease in mean cost: 98.7 €.
Tokmak et al, Int J Clin Exp Med 2014 (139)	Diagnosis & localization
n=154	SPECT/CT detectability rate: 98%
Retrospective	Sensitivity increased mainly in small lesions.
Burall GG et al, Mol Imaging Radionucl Ther 2012 (140)	Localization; compared to SPECT
n=32	SPECT/CT 31/32 patients vs. SPECT 22/32
	FN on SPECT: lesions <10mm.
Ciappuccini et al, Clin Nucl Med 2012 (141)	Diagnosis & preoperative localization
n=59	Diagnosis by 2-phase SPECT/CT in 66% patients
	Correlation with serum Calcium and PTH values
Suh et al, Otolaryngol Head Neck Surg 2015 (142)	Localization; compared with 4D-CT & US
n=38	4D-CT outperformed US & SPECT/CT with unique anatomic
Retrospective	data in 8% patients

Mandal et al, Laryngoscope 2015 (143)	Diagnosis; dual-phase SPECT/CT
n=75	Early-phase SPECT/CT 76% vs. late-phase 74%.
Retrospective	Early-phase localization: sensitivity 84%, specificity 89%
	(no improvement with dual-phase)
Koberstein et al, Can Assoc Radiol J 2016 (144)	Preoperative localization (specifically for ectopic PTA) &
n=88	correlation with serum PTH
Retrospective	Localization: Similar accuracy & reliability for normal &
	ectopic PTAs (90 vs. 94%).
	SPECT/CT accuracy correlates with serum PTH levels.
Barber et al, Head Neck 2016 (145)	Cost-effectiveness of preoperative localization (combined
n=259	with US)
Retrospective	US + SPECT/CT lateralization: sensitivity 87%, PPV 99%.
	Increased cost of US+SPECT/CT: 30% vs. SPECT/CT only
Keidar et al, Mol Imaging Biol 2017 (146)	Preoperative localization (by Perrier criteria)
n=88	SPECT/CT localization: accuracy 80%
Retrospective	
Woods et al, Nucl Med Comm 2017 (147)	Diagnosis & localization (combined with 123Iodine)
n=135	DI-SPECT/CT detection & localization: sensitivity 95%,
Retrospective	specificity 89%, PPV 97%, NPV 83%.
	Accuracy: diagnosis 94%; localization 92%.
Sandquist et al, Clin Nucl Med 2017 (148)	Preoperative localization; compared to SPECT
n=249	SPECT/CT sensitivity 83%, specificity 96%,
Retrospective	SPECT/CT had fewer FPs (vs. SPECT)
	Main advantage: PTAs < 210 mg.
Christakis et al, Eur J Radiol 2017 (149)	Localization; compared to US & 4D-CT
n=20	4D-CT + MIBI SPECT/CT: sensitivity 94% & accuracy 95%.
	US + 4D-CT + MIBI SPECT/CT: sensitivity & accuracy 100%.
Cheng et al, Clin Nucl Med 2018 (150)	Diagnosis & patient management
n=94	Positive SPECT/CT predicted eligibility for surgery.

PTA – parathyroid adenoma PTH – parathyroid hormone PPV – positive predictive value; NPV – negative predictive value

Table	12: Literature evic	dence on the rol	le of cardiac	SPECT/CT

Author/Source/Year	Aim & Results
No. patients (n)	
Clinical indications	
Type of study	
Schaap et al, J Cardiovasc Imaging, 2014, (151)	Incremental value of MP- SPECT/CCTA compared to SPECT and
n=205	ССТА
Diagnosis of CAD; CCTA	SPECT/CCTA had higher yield vs. stand-alone SPECT or CCTA in
Prospective	diagnosis of significant CAD
Schepis et al, Eur J Nucl Med Mol Imaging 2007 (152)	Use of CT-AC & CCS measurements
n=32	Attenuation maps derived from CT for CCS enable accurate AC
CT for AC & CCS	
Rispler et al, Int J Cardiol 2013 (153)	SPECT/CT quantitation of 123I-mIBG
n=53	Total cardiac count measurements are feasible using the CT
123Iodine mIBG cardiac uptake quantitation	component for determining heart boundaries even in case of
Prospective	very low uptake
Rispler et al, JACC 2007 (154)	Physiologic significance of coronary lesions compared to CCTA
n=56	SPECT/CCTA: improved specificity & PPV in patients with chest
Physiologic significance of CAD; SPECT/CCTA	pain
Prospective	
Kennedy JA et al. J Nucl Cardiology 2017 (155)	Measurements of perfusion scores in CZT- and Nal MPI-
n=312	SPECT/CT in AC & NAC studies
CZT perfusion score data base; CZT-SPECT/CT for AC	Specific database for CZT cardiac SPECT is needed for accurate
Prospective	quantitative diagnostic perfusion scores
Schaap et al, Eur Heart J, Cardiovasc Imaging 2013 (156)	Performance of SPECT/CCTA compared to SPECT & CCTA
n=98	SPECT/CCTA: superior for diagnosis of significant CAD
Performance in intermediate & high CAD likelihood	
Prospective	
Pretorius et al, J Nucl Cardiol 2017 (157)	
n= 1,103	Respiratory motion correction algorithms significantly reduce
Effect of respiratory motion & gender on MPI	artefacts
Abdollahi et al, Eur J Radiol 2016 (158)	
n=509	CT dose parameters are very low and below the reference
Radiation exposure estimates	level.
Özdemir et al, Mol Imaging Radionucl Ther 2016. (159)	
n=78	SPECT/CT defined prevalence of silent ischemia & adverse
Prevalence of silent ischemia in (pre)diabetics	events in asymptomatic (pre-)diabetics &
Prospective	predicted future CAD
Engbers et al, J Nucl Cardiol 2015; (160)	Comparison of sequential algorithms for CAD diagnosis & dose
n=5,018	reduction
Algorithm for CAD diagnosis & dose reduction	Stress first SPECT/CT: 50% of patients needed no additional
Prospective	testing.
Fiechter et al, Eur J Nucl Med Mol Imaging, 2011 (161)	Compared to ICA
n=66	CZT SPECT/CT: high accuracy for detection of angiographically
Diagnostic accuracy of CZT-SPECT/CT	identified lesions
Prospective	

Abadi et al, Eur J Radiol 2010 (162)	Measurement of SPECT LV volumes & EF; compared to CCTA
n=76	Caution when using SPECT and CT derived EF & volumes
LV volumes & function measurements	
Prospective	
Rispler et al, Eur J Nucl Med Mol Imaging 2011, (163)	SPECT/CCTA compared to TIMI risk score
n=90	40% of high- & 16% of low TIMI-RS patients had
Risk stratification in NSTE acute coronary syndrome	hemodynamically significant lesions
Retrospective	Normal perfusion spared revascularization regardless of TIMI-
	RS.
Tamam et al, World J Nucl Med 2016, (164)	Diagnostic value of AC in inferior wall; compared to NAC;
n=157	obese/non-obese patients
AC for MPI in (non)obese patients	Iterative reconstruction > FBP to correct diaphragm
	attenuation of inferior wall
	AC with OSEM iterative reconstruction improves results of
	stress-only MPI, in particular in obese patients
Kennedy et al, J Nucl Med 2009, (165)	Define SPECT/CT mis-registration with greatest impact on AC-
n=124	MPI quality
Mis-registration impact on AC-MPI quality	SPECT/CT: significant mis-registration in 23%, in direction of
Retrospective	most severe artefacts in 16% studies (lateral & anterior walls;
	SPECT myocardium overlap on lungs on CT)
Koopman et al, Nucl Med Comm 2015, (166)	CZT-SPECT/CT processing protocols for detection of ischemia;
n=20	AC compared to NAC
AC/NAC CZT-SPECT/CT processing protocols	Interoperator variations: 2.4±1.4% (NC) vs. 3.8±1.9% (AC)
Retrospective	CZT-SPECT/CT operator variations in MPI processing:
	significant & influence diagnosis, especially with AC
Matsuo et al, Annals Nucl Med 2015, (167)	Comparison of new & conventional acquisition protocols
n=40	with/without AC
AC/NAC acquisition protocols of 201Tl uptake	Short IQ-SPECT acquisition: equivalent high image quality to
Retrospective	conventional MPI

CAD – coronary artery disease NSTE – non-ST-elevation TIMI-RS – TIMI risk score AC- attenuation correction; NAC – non-attenuated CCS – coronary calcium score CCTA – coronary CT angiography MPI – myocardial perfusion imaging CZT – Cadmium Zinc Tellurium LV – left ventricle FBP – filtered back projection

MAJOR	MODERATE	MINOR
Head & neck	Head & neck	Head & neck
Parietal meningioma	Thyroid incidentalomas	Parathyroid adenoma
Orbital mass		
Parotid mass	Chest	Chest
Chest	Pulmonary parenchymal opacity	Calcified pulmonary nodule
Pneumothorax ⁺	Emphysema	
Pulmonary embolism ⁺	Bronchiectasis	Abdomen
Solid pulmonary mass	Pleural effusion	Gallstones in gallbladder
	Cardiomegaly	Fatty liver
Abdomen	Pericardial effusion	Hepatic cysts
Solid liver mass	Breast nodule	Renal cysts
Solid renal mass		Renal atrophy
Gall bladder mass	Abdomen	Appendicolith
GIT mass	Gallstone in common bile duct	Abdominal wall hernia
Pancreatic solid/cystic mass	Air in biliary tree	Umbilical hernia
Bilateral small kidneys	Absent kidney	Hiatus hernia
Adrenal mass	Renal calculus	
Retroperitoneal mass	Hydronephrosis	Pelvis
Pelvis	Complex renal cyst	Lipoma
Undescended testis	Splenomegaly	Bladder diverticulum
Ovarian cyst >5 cm	Bowel inflammation	Bladder stone
	Adrenal adenoma	Simple ovarian cyst
Vascular		Uterine fibroids
Deep vein thrombosis+	Pelvis	Uterine calcifications
Aortic aneurysm >5 cm ⁺	Uterine mass	Bartholin's cysts
Aortic dissection *	Uterine enlargement	,
	Pelvic kidney	Vascular
Musculoskeletal	Ureteric calculus	Left-sided vena cava
Vertebral body destruction	Scrotal hydrocoelle	Retroaortic left renal vein
Lytic bone lesions	Prostate enlargement	
Indeterminate sclerotic bone lesion		Musculoskeletal
	Vascular	Muscle atrophy
Reticuloendothelial	Aortic ectasia	Bone infarct
LN > 1.5 cm and/or multiple LNs	Pulmonary artery dilatation	Degenerative spine changes
	Signs of portal venous hypertension	
	Coronary artery calcification	
	Reticuloendothelial	
	LN > 1cm	
+: Notify referring	physician	

LN – lymph node

References

1. Giżewska A, Witkowska-Patena E, Osiecki S, Mazurek A, Stembrowicz-Nowakowska Z, Dziuk M. Utility of single-photon emission tomography/computed tomography for sentinel lymph node localization in breast cancer patients. Nucl Med Commun. 2017;38:493-9.

2. Borrelli P, Donswijk ML, Stokkel MP, Teixeira SC, van Tinteren H, Emiel JT, et al. Contribution of SPECT/CT for sentinel node localization in patients with ipsilateral breast cancer relapse. Eur J Nucl Med Mol Imaging. 2017;44:630-7.

3. Zetterlund L, Gabrielson S, Axelsson R, de Boniface J, Frisell J, Olsson A, et al. Impact of previous surgery on sentinel lymph node mapping: Hybrid SPECT/CT before and after a unilateral diagnostic breast excision. Breast. 2016;30:32-8.

4. Pouw B, Hellingman D, Kieft M, Vogel WV, van Os KJ, Rutgers E, et al. The hidden sentinel node in breast cancer: Reevaluating the role of SPECT/CT and tracer reinjection. Eur J Surg Oncol (EJSO). 2016;42:497-503.

5. Jimenez-Heffernan A, Ellmann A, Sado H, Huić D, Bal C, Parameswaran R, et al. Results of a prospective multicenter international atomic energy agency sentinel node trial on the value of SPECT/CT over planar imaging in various malignancies. J Nucl Med. 2015;56:1338-44.

6. Tomiguchi M, Yamamoto-Ibusuki M, Yamamoto Y, Fujisue M, Shiraishi S, Inao T, et al. Prediction of sentinel lymph node status using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of breast cancer. Surgery Today. 2016;46:214-23.

7. Shima H, Kutomi G, Satomi F, Maeda H, Takamaru T, Kameshima H, et al. Risk of node metastasis of sentinel lymph nodes detected in level II/III of the axilla by single-photon emission computed tomography/computed tomography. Experim Therap Medicine. 2014;8:1447-52.

8. Kraft O, Havel M. Sentinel lymph nodes and planar scintigraphy and SPECT/CT in various types of tumours. Estimation of some factors influencing detection success. Nucl Med Review. 2013;16:17-25.

9. Yoneyama H, Tsushima H, Kobayashi M, Onoguchi M, Nakajima K, Kinuya S. Improved detection of sentinel lymph nodes in SPECT/CT images acquired using a low-to medium-energy general-purpose collimator. Clin Nucl Med. 2014;39:e1-e6.

10. Brouwer O, Vermeeren L, van der Ploeg I, Olmos RV, Loo C, Pereira-Bouda L, et al. Lymphoscintigraphy and SPECT/CT in multicentric and multifocal breast cancer: does each tumour have a separate drainage pattern? Eur J Nucl Med Mol Imaging. 2012;39:1137-43.

11. Uren R, Howman-Giles R, Chung D, Spillane A, Noushi F, Gillett D, et al. SPECT/CT scans allow precise anatomical location of sentinel lymph nodes in breast cancer and redefine lymphatic drainage from the breast to the axilla. The Breast. 2012;21:480-6.

12. Coffey J, Hill J. Breast sentinel node imaging with low-dose SPECT/CT. Nucl Med Commun. 2010;31:107-11.

13. Cheville AL, Das I, Srinivas S, Schuerman J, Velders L, Solin LJ, et al. A pilot study to assess the utility of SPECT/CT-based lymph node imaging to localize lymph nodes that drain the arm in patients undergoing treatment for breast cancer. Breast Cancer Res Treatm. 2009;116:531.

14. van der Ploeg IM, Olmos RAV, Kroon BB, Rutgers EJ, Nieweg OE. The hidden sentinel node and SPECT/CT in breast cancer patients. Eur J Nucl Med Mol Imaging. 2009;36:6-11.

15. Gallowitsch H, Kraschl P, Igerc I, Hussein T, Kresnik E, Mikosch P, et al. Sentinel node SPECT-CT in breast cancer. Can we expect any additional and clinically relevant information? Nuklearmedizin. 2007;46:252-6.

16. Lerman H, Lievshitz G, Zak O, Metser U, Schneebaum S, Even-Sapir E. Improved sentinel node identification by SPECT/CT in overweight patients with breast cancer. J Nucl Med. 2007;48:201-6.

17. Trinh BB, Chapman BC, Gleisner A, Kwak JJ, Morgan R, McCarter MD, et al. SPECT/CT adds distinct lymph node basins and influences radiologic findings and surgical approach for sentinel lymph node biopsy in head and neck melanoma. Ann Surg Oncol. 2018;25:1716-22.

18. Doepker MP, Yamamoto M, Applebaum MA, Patel NU, Montilla-Soler MJ, Sarnaik AA, et al. Comparison of Single-Photon Emission Computed Tomography–Computed Tomography (SPECT/CT) and conventional planar lymphoscintigraphy for sentinel node localization in patients with cutaneous malignancies. Ann Surg Oncol. 2017;24:355-61.

19. Stoffels I, Müller M, Geisel MH, Leyh J, Pöppel T, Schadendorf D, et al. Cost-effectiveness of preoperative SPECT/CT combined with lymphoscintigraphy vs. lymphoscintigraphy for sentinel lymph node excision in patients with cutaneous malignant melanoma. Eur J Nucl Med Mol Imaging. 2014;41:1723-31.

20. Zender C, Guo T, Weng C, Faulhaber P, Rezaee R. Utility of SPECT/CT for periparotid sentinel lymph node mapping in the surgical management of head and neck melanoma. Am J Otolaryngology. 2014;35:12-8.

 Fairbairn N, Munson C, Khan ZA, Butterworth M. The role of hybrid SPECT/CT for lymphatic mapping in patients with melanoma. J Plast Reconstr Aesth Surgery. 2013;66:1248-55.
 Vuthaluru S, Pushker N, Lokdarshi G, Kumar R, Bajaj MS, Kashyap S, et al. Sentinel lymph node biopsy in malignant eyelid tumor: hybrid single photon emission computed tomography/computed tomography and dual dye technique. Am J Ophthalmology. 2013;156:43-9. e2.

23. Stoffels I, Boy C, Pöppel T, Kuhn J, Klötgen K, Dissemond J, et al. Association between sentinel lymph node excision with or without preoperative SPECT/CT and metastatic node detection and disease-free survival in melanoma. JAMA. 2012;308:1007-14.

24. Kraft O, Havel M. Localisation of sentinel lymph nodes in patients with melanomas by planar lymphoscintigraphic and hybrid SPECT/CT imaging. Nucl Med Review. 2012;15:101-7.

25. Veenstra HJ, Klop WMC, Speijers MJ, Lohuis PJ, Nieweg OE, Hoekstra HJ, et al. Lymphatic drainage patterns from melanomas on the shoulder or upper trunk to cervical lymph nodes and implications for the extent of neck dissection. Ann Surg Oncology. 2012;19:3906-12.

26. Veenstra HJ, Vermeeren L, Olmos RAV, Nieweg OE. The additional value of lymphatic mapping with routine SPECT/CT in unselected patients with clinically localized melanoma. Ann Surgical Oncology. 2012;19:1018-23.

27. Nielsen KR, Chakera AH, Hesse B, Scolyer RA, Stretch JF, Thompson JF, et al. The diagnostic value of adding dynamic scintigraphy to standard delayed planar imaging for sentinel node identification in melanoma patients. Eur J Nucl Med Mol Imaging. 2011;38:1999.

28. Klode J, Poeppel T, Boy C, Mueller S, Schadendorf D, Körber A, et al. Advantages of preoperative hybrid SPECT/CT in detection of sentinel lymph nodes in cutaneous head and neck malignancies. J Eur Acad Derm Vener. 2011;25:1213-21.

29. Vermeeren L, Valdés Olmos RA, Klop WMC, van der Ploeg IM, Nieweg OE, Balm AJ, et al. SPECT/CT sentinel lymph node mapping in head and neck melanoma. Head & Neck. 2011;33:1-6.

30. van der Ploeg IM, Kroon BB, Olmos RAV, Nieweg OE. Evaluation of lymphatic drainage patterns to the groin and implications for the extent of groin dissection in melanoma patients. Ann Surg Oncol. 2009;16:2994.

31. van der Ploeg IM, Olmos RAV, Kroon BB, Wouters MW, van den Brekel MW, Vogel WV, et al. The yield of SPECT/CT for anatomical lymphatic mapping in patients with melanoma. Ann Surg Oncol. 2009;16:1537-42.

32. Ishihara T, Kaguchi A, Matsushita S, Shiraishi S, Tomiguchi S, Yamashita Y, et al. Management of sentinel lymph nodes in malignant skin tumors using dynamic lymphoscintigraphy and the single-photon-emission computed tomography/computed tomography combined system. Internat J Clin Oncol. 2006;11:214-20.

33. Even-Sapir E, Lerman H, Lievshitz G, Khafif A, Fliss DM, Schwartz A, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med. 2003;44:1413.

34. Avram AM, Esfandiari NH, Wong KK. Preablation ¹³¹I SPECT/CT contributes to thyroid cancer risk stratification and 131I therapy planning. J Clin Endocr Metab 2015;100:1895-902.

35. Agrawal K, Bhattacharya A, Mittal BR. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer. Ind J Nucl Med. 2015;30:221.

36. Avram AM, Fig LM, Frey KA, Gross MD, Wong KK. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging? J Clin Endocr Metab. 2013;98:1163-71.

37. Wong KK, Sisson JC, Koral KF, Frey KA, Avram AM. Staging of differentiated thyroid carcinoma using diagnostic ¹³¹I SPECT/CT. AJR Am J Roentgenology. 2010;195:730-6.

38. Hassan FU, Mohan HK. Clinical utility of SPECT/CT imaging post-radioiodine therapy: does it enhance patient management in thyroid cancer? Eur Thyroid J. 2015;4:239-45.

39. Grewal RK, Michael Tuttle R, Fox J, Borkar S, Chou JF, Gonen M, et al. The effect of posttherapy ¹³¹I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51:1361.

40. Kohlfuerst S, Igerc I, Lobnig M, Gallowitsch H, Gomez-Segovia I, Matschnig S, et al. Posttherapeutic ¹³¹I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886.

41. Spanu A, Solinas ME, Chessa F, Sanna D, Nuvoli S, Madeddu G.¹³¹I SPECT/CT in the followup of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009.50:184-90.

42. Wang H, Fu H-L, Li J-N, Zou R-J, Gu Z-H, Wu J-C. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging. 2009;33:49-54.

43. Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic ¹³¹I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. Am J Roentgenology. 2008;191:1785-94.

44. Tharp K, Israel O, Hausmann J, Bettman L, Martin W, Daitzchman M, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:1435-42.

45. Kunikowska J, Lewington V, Krolicki L. Optimizing somatostatin receptor imaging in patients with neuroendocrine tumors: the Impact of ^{99m}Tc-HYNICTOC SPECT/SPECT/CT versus ⁶⁸Ga-DOTATATE PET/CT upon clinical management. Clin Nucl Med. 2017;42:905-11.

46. Trogrlic M, Tezak S. Incremental value of ^{99m}Tc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours. Nuklearmedizin. 2017;56:97-107.

47. de Camargo Etchebehere ECS, de Oliveira Santos A, Gumz B, Vicente A, Hoff PG, Corradi G, et al. ⁶⁸Ga-DOTATATE PET/CT, ^{99m}Tc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med. 2014;55:1598-604.

48. Spanu A, Schillaci O, Piras B, Calvisi DF, Falchi A, Danieli R, et al. Non-functioning gastroenteropancreatic (GEP) tumors: a ¹¹¹In-Pentetreotide SPECT/CT diagnostic study. Am J Nucl Med Mol Imaging. 2017;7:181-94.

49. Ait Boudaoud A, Verges B, Petit JM, Tatulashvili S, Cochet A, Humbert O. Uptake in the pancreatic uncinate process on the ¹¹¹In-octreotide scintigraphy: How to distinguish physiological from pathological uptake? Nucl Med Comm. 2017;38:737-43.

50. Ruf J, von Wedel F, Furth C, Denecke T, Stelter L, Steffen IG, et al. Significance of a singletime-point somatostatin receptor SPECT/multiphase CT protocol in the diagnostic work-up of gastroenteropancreatic neuroendocrine neoplasms. J Nucl Med. 2016;57:180-5.

51. Lee I, Paeng JC, Lee SJ, Shin CS, Jang JY, Cheon GJ, et al. Comparison of diagnostic sensitivity and quantitative indices between ⁶⁸Ga-DOTATOC PET/CT and ¹¹¹In-Pentetreotide SPECT/CT in neuroendocrine tumors: preliminary report. Nucl Med Mol Imaging. 2015;49:284-90. 52. Chiaravalloti A, Spanu A, Danieli R, Dore F, Piras B, Falchi A, et al. ¹¹¹In-Pentetreotide SPECT/CT in pulmonary carcinoid. Anticancer Research. 2015;35:4265-70.

53. Sainz-Esteban A, Olmos R, González-Sagrado M, González ML, Ruiz MÁ, García-Talavera P, et al. Contribution of ¹¹¹In-pentetreotide SPECT/CT imaging to conventional somatostatin receptor scintigraphy in the detection of neuroendocrine tumours. Nucl Med Comm. 2015;36:251-9.

54. Schreiter NF, Bartels A-M, Froeling V, Steffen I, Pape U-F, Beck A, et al. Searching for primaries in patients with neuroendocrine tumors (NET) of unknown primary and clinically suspected NET: evaluation of Ga-68 DOTATOC PET/CT and In-111 DTPA octreotide SPECT/CT. Radiol Oncol. 2014;48:339-47.

55. Apostolova I, Riethdorf S, Buchert R, Derlin T, Brenner W, Mester J, et al. SPECT/CT stabilizes the interpretation of somatostatin receptor scintigraphy findings: a retrospective analysis of inter-rater agreement. Ann Nucl Medicine. 2010;24:477-83.

56. Castaldi P, Rufini V, Treglia G, Bruno I, Perotti G, Stifano G, et al. Impact of ¹¹¹In-DTPAoctreotide SPECT/CT fusion images in the management of neuroendocrine tumours. La Radiologia Medica. 2008;113:1056-67.

57. Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Quart J Nucl Med Mol Imaging. 2008;52:323.

58. Hillel P, Van Beek E, Taylor C, Lorenz E, Bax N, Prakash V, et al. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours. Clin Radiol. 2006;61:579-87.

59. Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, et al. SPECT/CT hybrid imaging with ¹¹¹In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocr. 2003;59:565-73.

60. Chang CA, Pattison DA, Tothill RW, Kong G, Akhurst TJ, Hicks RJ, et al. ⁶⁸Ga-DOTATATE and ¹⁸F-FDG PET/CT in paraganglioma and pheochromocytoma: utility, patterns and heterogeneity. Cancer Imaging. 2016;16:22.

61. Kroiss AS, Uprimny C, Shulkin BL, Frech A, Tilg H, Gasser RW, et al. Compared to ¹²³I-MIBG SPECT/CT, ¹⁸F-DOPA PET/CT provides accurate tumor extent in patients with extra-adrenal paraganglioma. Ann Nucl Med. 2017;31:357-65.

62. Nakamoto R, Nakamoto Y, Ishimori T, Togashi K. Clinical significance of quantitative ¹²³I-MIBG SPECT/CT analysis of pheochromocytoma and paraganglioma. Clin Nucl Med. 2016;41:e465-e72.

63. Kroiss A, Shulkin BL, Uprimny C, Frech A, Gasser RW, Url C, et al. ⁶⁸Ga-DOTATOC PET/CT provides accurate tumour extent in patients with extraadrenal paraganglioma compared to ¹²³I-MIBG SPECT/CT. Eur J Nucl Med Mol Imaging. 2015;42:33-41.

64. Derlin T, Busch JD, Wisotzki C, Schoennagel BP, Bannas P, Papp L, et al. Intraindividual comparison of ¹²³I-mIBG SPECT/MRI, ¹²³I-mIBG SPECT/CT, and MRI for the detection of adrenal

pheochromocytoma in patients with elevated urine or plasma catecholamines. Clin Nucl Med. 2013;38:e1-e6.

65. Fukuoka M, Taki J, Mochizuki T, Kinuya S. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/paraganglioma and neuroblastoma. Clin Nucl Med. 2011;36:1-7.

66. Meyer-Rochow GY, Schembri GP, Benn DE, Sywak MS, Delbridge LW, Robinson BG, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (MIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol. 2010;17:392-400.

67. Zhao Z, Li L, Li F, Zhao L. Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer. Skel Radiol. 2010;39:147.

68. Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Türler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59-67.

69. Zhang Y, Shi H, Li B, Cai L, Gu Y, Xiu Y. The added value of SPECT/spiral CT in patients with equivocal bony metastasis from hepatocellular carcinoma. Nuklearmedizin. 2015;54:255-61.

70. Haraldsen A, Bluhme H, Røhl L, Pedersen EM, Jensen AB, Hansen EB, et al. Single photon emission computed tomography (SPECT) and SPECT/low-dose computerized tomography did not increase sensitivity or specificity compared to planar bone scintigraphy for detection of bone metastases in advanced breast cancer. Clin Physiol Funct Imaging. 2016;36:40-6.

71. Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, ¹⁸F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59-67.

72. Fonager RF, Zacho HD, Langkilde NC, Fledelius J, Ejlersen JA, Haarmark C, et al. Diagnostic test accuracy study of ¹⁸F-sodium fluoride PET/CT, ^{99m}Tc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer. Am J Nucl Med Mol Imaging. 2017;7:218-27.

73. Mahaletchumy T, AbAziz A. Incremental value of single-photon emission computed tomography-computed tomography for characterization of skeletal lesions in breast cancer patients. World J Nucl Med. 2017;16:303.

74. Dittmann H, Kopp D, Kupferschlaeger J, Feil D, Groezinger G, Syha R, et al. A prospective study of quantitative SPECT/CT for evaluation of lung shunt fraction before SIRT of liver tumors. J Nucl Med. 2018;59:1366-72.

75. Yue J, Mauxion T, Reyes DK, Lodge MA, Hobbs RF, Rong X, et al. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer. Med Physics. 2016;43:5779-90.

76. Erxleben C, Scheurig-Münkler C, Geisel D, Hamm B, Gebauer B, Powerski MJ. Hepatopulmonary shunting after surgical, interventional and systemic therapy in patients with liver malignancies scheduled for radioembolization. Acta Radiol. 2016;57:908-13.

77. Theysohn JM, Ruhlmann M, Müller S, Dechene A, Best J, Haubold J, et al. Radioembolization with Y-90 glass microspheres: do we really need SPECT-CT to identify extrahepatic shunts? PLoS One. 2015;10:e0137587.

78. Gates VL, Singh N, Lewandowski RJ, Spies S, Salem R. Intraarterial hepatic SPECT/CT imaging using ^{99m}Tc-macroaggregated albumin in preparation for radioembolization. J Nucl Med. 2015;56:1157-62.

79. Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Bartenstein P, et al. Systematic evaluation of tumoral ^{99m}Tc-MAA uptake using SPECT and SPECT/CT in 502 patients before ⁹⁰Y radioembolization. J Nucl Med. 2015;56:333-8.

80. Spreafico C, Morosi C, Maccauro M, Romito R, Lanocita R, Civelli EM, et al. Intrahepatic flow redistribution in patients treated with radioembolization. Cardiovasc Intervent Radiol. 2015;38:322-8.

81. van den Hoven AF, Smits ML, de Keizer B, van Leeuwen MS, van den Bosch MA, Lam MG. Identifying aberrant hepatic arteries prior to intra-arterial radioembolization. Cardiovasc Intervent Radiol. 2014;37:1482-93.

82. Zade AA, Rangarajan V, Purandare NC, Shah SA, Agrawal AR, Kulkarni SS, et al. ⁹⁰Y microsphere therapy: does ⁹⁰Y PET/CT imaging obviate the need for ⁹⁰Y Bremsstrahlung SPECT/CT imaging? Nucl Med Comm. 2013;34:1090-6.

83. Padia SA, Alessio A, Kwan SW, Lewis DH, Vaidya S, Minoshima S. Comparison of positron emission tomography and bremsstrahlung imaging to detect particle distribution in patients undergoing yttrium-90 radioembolization for large hepatocellular carcinomas or associated portal vein thrombosis. J Vasc Interv Radiol. 2013;24:1147-53.

84. Burgmans M, Too C, Kao Y, Goh A, Chow P, Tan B, et al. Computed tomography hepatic arteriography has a hepatic falciform artery detection rate that is much higher than that of digital subtraction angiography and 99mTc-MAA SPECT/CT: Implications for planning ⁹⁰Y radioembolization? Eur J Radiol. 2012;81:3979-84.

85. Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2012;39:309-15.

86. Lauenstein T, Heusner T, Hamami M, Ertle J, Schlaak J, Gerken G, et al. Radioembolization of hepatic tumors: flow redistribution after the occlusion of intrahepatic arteries. RöFo. 2011;183:1058-64.

87. Hamami ME, Poeppel TD, Muller S, Heusner T, Bockisch A, Hilgard P, et al. SPECT/CT with ^{99m}Tc-MAA in radioembolization with ⁹⁰Y microspheres in patients with hepatocellular cancer. J Nucl Med. 2009;50:688-92.

88. Denecke T, Rühl R, Hildebrandt B, Stelter L, Grieser C, Stiepani H, et al. Planning transarterial radioembolization of colorectal liver metastases with Yttrium 90 microspheres: evaluation of a sequential diagnostic approach using radiologic and nuclear medicine imaging techniques. Eur Radiology. 2008;18:892-902.

89. Russo VM, Dhawan RT, Baudracco I, Dharmarajah N, Lazzarino AI, Casey AT. Hybrid bone SPECT/CT imaging in evaluation of chronic low back pain: correlation with facet joint arthropathy. World Neurosurg. 2017;107:732-8.

90. Hudyana H, Maes A, Vandenberghe T, Fidlers L, Sathekge M, Nicolai D, et al. Accuracy of bone SPECT/CT for identifying hardware loosening in patients who underwent lumbar fusion with pedicle screws. Eur J Nucl Med Mol Imaging. 2016;43:349-54.

91. Sumer J, Schmidt D, Ritt P, Lell M, Forst R, Kuwert T, et al. SPECT/CT in patients with lower back pain after lumbar fusion surgery. Nucl Med Comm. 2013;34:964-70.

92. Ha S, Hong SH, Paeng JC, Lee DY, Cheon GJ, Arya A, et al. Comparison of SPECT/CT and MRI in diagnosing symptomatic lesions in ankle and foot pain patients: diagnostic performance and relation to lesion type. PLoS One. 2015;10:e0117583.

93. Chicklore S, Gnanasegaran G, Vijayanathan S, Fogelman I. Potential role of multislice SPECT/CT in impingement syndrome and soft-tissue pathology of the ankle and foot. Nucl Med Comm. 2013;34:130-9.

94. Huellner MW, Bürkert A, Strobel K, Lago MdSP, Werner L, Hug U, et al. Imaging nonspecific wrist pain: interobserver agreement and diagnostic accuracy of SPECT/CT, MRI, CT, bone scan and plain radiographs. PloS One. 2013;8:e85359.

95. Schleich FS, Schürch M, Huellner MW, Hug U, von Wartburg U, Strobel K, et al. Diagnostic and therapeutic impact of SPECT/CT in patients with unspecific pain of the hand and wrist. EJNMMI research. 2012;2:53.

96. Dobrindt O, Amthauer H, Krueger A, Ruf J, Wissel H, Grosser OS, et al. Hybrid SPECT/CT for the assessment of a painful hip after uncemented total hip arthroplasty. BMC Med Imag. 2015;15:18.

97. Chew CG, Lewis P, Middleton F, van den Wijngaard R, Deshaies A. Radionuclide arthrogram with SPECT/CT for the evaluation of mechanical loosening of hip and knee prostheses. Ann Nucl Med. 2010;24:735-43.

98. Slevin O, Schmid FA, Schiapparelli F, Rasch H, Hirschmann MT. Increased in vivo patellofemoral loading after total knee arthroplasty in resurfaced patellae. Knee Surg Sports Traumatol Arthrosc. 2018;26:1805-10.

99. Horger M, Eschmann SM, Pfannenberg C, Storek D, Dammann F, Vonthein R, et al. The value of SPET/CT in chronic osteomyelitis. Eur J Nucl Med Mol Imaging. 2003;30:1665-73.

100. Filippi L, Schillaci O, Santoni R, Manni C, Danieli R, Simonetti G. Usefulness of SPECT/CT with a hybrid camera for the functional anatomical mapping of primary brain tumors by [Tc99m] tetrofosmin. Cancer Biother Radiophar. 2006;21:41-8.

Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, et al. SPECT/CT using
⁶⁷Ga and ¹¹¹In-labeled leukocyte scintigraphy for diagnosis infection. J Nuc Med. 2006;47:587-94.
Horger M, Eschmann SM, Pfannenberg C, Storek D, Vonthein R, Claussen CD, et al. Added value of SPECT/CT in patients suspected of having bone infection: preliminary results. Arch Orthop Traum Surg. 2007;127:211-21.

103. Sathekge M, Garcia-Perez O, Paez D, El-Haj N, Kain-Godoy T, Lawal I, et al. Molecular imaging in musculoskeletal infections with ^{99m}Tc-UBI 29-41 SPECT/CT. Ann Nucl Med. 2018;32:54-9.

104. Djekidel M, Brown RK, Piert M. Benefits of hybrid SPECT/CT for ¹¹¹In-Oxine-and ^{99m}Tc-Hexamethylpropylene Amine Oxime-labeled leukocyte imaging. Clin Nucl Med. 2011;36:e50-e6.

105. Filippi L, Uccioli L, Giurato L, Schillaci O. Diabetic foot infection: usefulness of SPECT/CT for ^{99m}Tc-HMPAO-labeled leukocyte imaging. J Nucl Med. 2009;50:1042-6.

106. Heiba SI, Kolker D, Mocherla B, Kapoor K, Jiang M, Son H, et al. The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg. 2010;49:529-36.

107. Erdman WA, Buethe J, Bhore R, Ghayee HK, Thompson C, Maewal P, et al. Indexing severity of diabetic foot infection with ^{99m}Tc-WBC SPECT/CT hybrid imaging. Diabetes Care. 2012;35:1826-31.

108. Aslangul E, M'bemba J, Caillat-Vigneron N, Coignard S, Larger E, Boitard C, et al. Diagnosing diabetic foot osteomyelitis in patients without signs of soft tissue infection by coupling hybrid ⁶⁷Ga SPECT/CT with bedside percutaneous bone puncture. Diabetes Care. 2013; 36:2203-10.

109. Heiba S, Kolker D, Ong L, Sharma S, Travis A, Teodorescu V, et al. Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Com. 2013;34:877-84.

110. Vouillarmet J, Morelec I, Thivolet C. Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diab Med. 2014;31:1093-9.

111. La JF, Bhavan K, Lam K, Van SA, Erdman W, Lavery LA, et al. Comparison between Tc-99m WBC SPECT/CT and MRI for the diagnosis of biopsy-proven diabetic foot osteomyelitis. Wounds: a compendium of clinical research and practice. 2016;28:271-8.

112. Lazaga F, Van Asten SA, Nichols A, Bhavan K, La Fontaine J, Oz OK, et al. Hybrid imaging with ^{99m}Tc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J. 2016;13:1158-60.

113. Vouillarmet J, Moret M, Morelec I, Michon P, Dubreuil J. Application of white blood cell SPECT/CT to predict remission after a 6 or 12 week course of antibiotic treatment for diabetic foot osteomyelitis. Diabetologia. 2017;60:2486-94.

114. Fuster D, Solà O, Soriano A, Monegal A, Setoain X, Tomás X, et al. A prospective study comparing whole-body FDG PET/CT to combined planar bone scan with ⁶⁷Ga SPECT/CT in the diagnosis of spondylodiskitis. Clin Nucl Med. 2012;37:827-32.

115. Tamm AS, Abele JT. Bone and gallium single-photon emission computed tomographycomputed tomography is equivalent to magnetic resonance imaging in the diagnosis of infectious spondylodiscitis: A retrospective study. Can Assoc Radiol J. 2017;68:41-6.

116. Lazzeri E, Erba P, Perri M, Doria R, Tascini C, Mariani G. Clinical impact of SPECT/CT with In-111 biotin on the management of patients with suspected spine infection. Clin Nucl Med. 2010;35:12-7.

117. Chakraborty D, Bhattacharya A, Gupta AK, Panda NK, Das A, Mittal BR. Skull base osteomyelitis in otitis externa: The utility of triphasic and single photon emission computed tomography/computed tomography bone scintigraphy. Indian journal of nuclear medicine. Ind J Nucl Med. 2013;28:65-9.

118. Sharma P, Agarwal KK, Kumar S, Singh H, Bal C, Malhotra A, et al. Utility of ^{99m}Tc-MDP hybrid SPECT-CT for diagnosis of skull base osteomyelitis: comparison with planar bone scintigraphy, SPECT, and CT. Jap J Radiol. 2013;31:81-8.

119. Bolouri C, Merwald M, Huellner MW, Veit-Haibach P, Kuttenberger J, Pérez-Lago M, et al. Performance of orthopantomography, planar scintigraphy, CT alone and SPECT/CT in patients with suspected osteomyelitis of the jaw. Eur J Nucl Med Mol Imaging. 2013;40:411-7.

120. Graute V, Feist M, Lehner S, Haug A, Müller PE, Bartenstein P, et al. Detection of lowgrade prosthetic joint infections using ^{99m}Tc-antigranulocyte SPECT/CT: initial clinical results. Eur J Nucl Med Mol Imaging. 2010;37:1751-9.

121. Kim HO, Na SJ, Oh SJ, Jung BS, Lee S-H, Chang JS, et al. Usefulness of adding SPECT/CT to ^{99m}Tc-hexamethylpropylene amine oxime (HMPAO)-labeled leukocyte imaging for diagnosing prosthetic joint infections. J Comp Assist Tomog. 2014;38:313-9.

122. Lou L, Alibhai KN, Winkelaar GB, Turnbull RG, Hoskinson ME, Warshawski R, et al. ^{99m}Tc-WBC scintigraphy with SPECT/CT in the evaluation of arterial graft infection. Nucl Med Comm. 2010;31:411-6.

123. Khaja MS, Sildiroglu O, Hagspiel K, Rehm PK, Cherry KJ, Turba UC. Prosthetic vascular graft infection imaging. Clin Imaging. 2013;37:239-44.

124. Erba P, Leo G, Sollini M, Tascini C, Boni R, Berchiolli R, et al. Radiolabelled leucocyte scintigraphy versus conventional radiological imaging for the management of late, low-grade vascular prosthesis infections. Eur J Nucl Med Mol Imaging. 2014;41:357-68.

125. Erba PA, Conti U, Lazzeri E, Sollini M, Doria R, De Tommasi SM, et al. Added value of ^{99m}Tc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med. 2012;53:1235-43.

126. Lauridsen TK, Iversen KK, Ihlemann N, Hasbak P, Loft A, Berthelsen AK, et al. Clinical utility of ¹⁸F-FDG positron emission tomography/computed tomography scan vs. ^{99m}Tc-HMPAO white

blood cell single-photon emission computed tomography in extra-cardiac work-up of infective endocarditis. Int J Cardiovasc Imaging. 2017;33:751-60.

127. Litzler P-Y, Manrique A, Etienne M, Salles A, Edet-Sanson A, Vera P, et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med. 2010;51:1044-8.

128. Erba PA, Sollini M, Conti U, Bandera F, Tascini C, De Tommasi SM, et al. Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections. JACC: Cardiovasc Imaging. 2013;6:1075-86.

129. Heiba SI, Stempler L, Sullivan T, Kolker D, Kostakoglu L. The ideal dual-isotope imaging combination in evaluating patients with suspected infection of pelvic pressure ulcers. Nucl Med Comm. 2017;38:129-34.

130. Hung B-T, Wang P-W, Su Y-J, Huang W-C, Chang Y-H, Huang S-H, et al. The efficacy of ¹⁸F-FDG PET/CT and ⁶⁷Ga SPECT/CT in diagnosing fever of unknown origin. Int J Inf Dis. 2017;62:10-7.

131. Nowosinska E, Navalkissoor S, Quigley AM, Buscombe JR. Is there a role for Gallium-67 citrate SPECT/CT, in patients with renal impairment or who are renal transplant recipients, in identifying and localizing suspected infection? World J Nucl Med. 2015;14:184-8.

132. Gayed IW, Kim EE, Broussard WF, Evans D, Lee J, Broemeling LD, et al. The value of ^{99m}Tcsestamibi SPECT/CT over conventional SPECT in the evaluation of parathyroid adenomas or hyperplasia. J Nucl Med. 2005;46:248-52.

133. Krausz Y, Bettman L, Guralnik L, Yosilevsky G, Keidar Z, Bar-Shalom R, et al. Technetium-99m-MIBI SPECT/CT in primary hyperparathyroidism. World J Surg. 2006;30:76-83.

134. Lavely WC, Goetze S, Friedman KP, Leal JP, Zhang Z, Garret-Mayer E, et al. Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase ^{99m}Tc-sestamibi parathyroid scintigraphy. J Nucl Med. 2007;48:1084-9.

135. Neumann D, Obuchowski N, Difilippo F. Preoperative ¹²³I/^{99m}Tc-sestamibi subtraction SPECT and SPECT/CT in primary hyperparathyroidism. J Nucl Med. 2008;49:2012-7.

136. Patel C, Salahudeen H, Lansdown M, Scarsbrook A. Clinical utility of ultrasound and ^{99m}Tcsestamibi SPECT/CT for preoperative localization of parathyroid adenoma in patients with primary hyperparathyroidism. Clin Radiol. 2010;65:278-87.

137. Pata G, Casella C, Besuzio S, Mittempergher F, Salerni B. Clinical appraisal of 99m technetium-sestamibi SPECT/CT compared to conventional SPECT in patients with primary hyperparathyroidism and concomitant nodular goiter. Thyroid. 2010;20:1121-7.

138. Pata G, Casella C, Magri GC, Lucchini S, Panarotto MB, Crea N, et al. Financial and clinical implications of low-energy CT combined with 99m Technetium-sestamibi SPECT for primary hyperparathyroidism. Ann Surg Oncology. 2011;18:2555-63.

139. Tokmak H, Demirkol MO, Alagöl F, Tezelman S, Terzioglu T. Clinical impact of SPECT-CT in the diagnosis and surgical management of hyper-parathyroidism. International journal of clinical and experimental medicine. 2014;7:1028-34.

140. Bural GG, Muthukrishnan A, Oborski MJ, Mountz JM. Improved benefit of SPECT/CT compared to SPECT alone for the accurate localization of endocrine and neuroendocrine tumors. Mol Imag Radionucl Ther. 2012;21:91-6.

141. Ciappuccini R, Morera J, Pascal P, Rame J-P, Heutte N, Aide N, et al. Dual-phase 99mTc sestamibi scintigraphy with neck and thorax SPECT/CT in primary hyperparathyroidism: a single-institution experience. Clin Nucl Med. 2012;37:223-8.

142. Suh YJ, Choi JY, Kim S-j, Chun IK, Yun TJ, Lee KE, et al. Comparison of 4D CT, ultrasonography, and ^{99m}Tc-sestamibi SPECT/CT in localizing single-gland primary hyperparathyroidism. Otolaryng – Head Neck Surg. 2015;152:438-43.

143. Mandal R, Muthukrishnan A, Ferris RL, de Almeida JR, Duvvuri U. Accuracy of early-phase versus dual-phase single-photon emission computed tomography/computed tomography in the localization of parathyroid disease. Laryngoscope. 2015;125:1496-501.

144. Koberstein W, Fung C, Romaniuk K, Abele JT. Accuracy of dual phase single-photon emission computed tomography/computed tomography in primary hyperparathyroidism: correlation with serum parathyroid hormone levels. Can Assoc Radiol J. 2016;67:115-21.

145. Barber B, Moher C, Côté D, Fung E, O'connell D, Dziegielewski P, et al. Comparison of single photon emission CT (SPECT) with SPECT/CT imaging in preoperative localization of parathyroid adenomas: A cost-effectiveness analysis. Head & Neck. 2016;38(S1):E2062-E5.

146. Keidar Z, Solomonov E, Karry R, Frenkel A, Israel O, Mekel M. Preoperative [^{99m}Tc]MIBI SPECT/CT interpretation criteria for localization of parathyroid adenomas - Correlation with surgical findings. Mol Imag Biol. 2017;19:265-70.

147. Woods A-M, Bolster AA, Han S, Poon F-W, Colville D, Shand J, et al. Dual-isotope subtraction SPECT-CT in parathyroid localization. Nucl Med Comm. 2017;38:1047-54.

148. Sandqvist P, Nilsson I-L, Grybäck P, Sanchez-Crespo A, Sundin A. SPECT/CT's advantage for preoperative localization of small parathyroid adenomas in primary hyperparathyroidism. Clin Nucl Med. 2017;42:e109-e14.

149. Christakis I, Vu T, Chuang HH, Fellman B, Figueroa AMS, Williams MD, et al. The diagnostic accuracy of neck ultrasound, 4D-Computed tomographyand sestamibi imaging in parathyroid carcinoma. Eur J Radiol. 2017;95:82-8.

150. Cheng Z, Zou S, Peng D, Zhang G, Zhu X. Prognostic value of ^{99m}Tc-Sestamibi parathyroid scintigraphy in predicting future surgical eligibility in patients with asymptomatic primary hyperparathyroidism. Clin Nucl Med. 2018;43:151-4.

151. Schaap J, de Groot JA, Nieman K, Meijboom WB, Boekholdt SM, Kauling RM, et al. Added value of hybrid myocardial perfusion SPECT and CT coronary angiography in the diagnosis of coronary artery disease. Eur Heart J - Cardiovasc Imaging. 2014;15:1281-8.

152. Schepis T, Gaemperli O, Koepfli P, Rüegg C, Burger C, Leschka S, et al. Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2007;34:11-9.

153. Rispler S, Frenkel A, Kuptzov E, Brodov Y, Israel O, Keidar Z. Quantitative ¹²³I-MIBG SPECT/CT assessment of cardiac sympathetic innervation - A new diagnostic tool for heart failure. Int J Cardiol. 2013;168:1556-8.

154. Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. JACC. 2007;49:1059-67.

155. Kennedy JA, Brodov Y, Weinstein AL, Israel O, Frenkel A. The effect of CT-based attenuation correction on the automatic perfusion score of myocardial perfusion imaging using a dedicated cardiac solid-state CZT SPECT/CT. J Nucl Cardiol. 2017:1-10.

156. Schaap J, Kauling RM, Boekholdt SM, Nieman K, Meijboom WB, Post MC, et al. Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease. Eur Heart J – Cardiovasc Imaging. 2013;14:642-9.

157. Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol. 2017.2350-017-0890-3.

158. Abdollahi H, Shiri I, Salimi Y, Sarebani M, Mehdinia R, Deevband MR, et al. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose. Eur J Radiol. 2016;85:2257-61.

159. Özdemir E, Polat ŞB, Yıldırım N, Türkölmez Ş, Ersoy R, Durmaz T, et al. Evaluation of silent myocardial ischemia with Single-Photon Emission Computed Tomography/Computed Tomography in asymptomatic subjects with diabetes and pre-diabetes. Mol Imag Radionucl Ther. 2016;25:70.

160. Engbers EM, Timmer JR, Ottervanger JP, Mouden M, Oostdijk AH, Knollema S, et al. Sequential SPECT/CT imaging for detection of coronary artery disease in a large cohort: evaluation of the need for additional imaging and radiation exposure. J Nucl Cardiol. 2017;24:212-23.

161. Fiechter M, Ghadri JR, Kuest SM, Pazhenkottil AP, Wolfrum M, Nkoulou RN, et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur J Nucl Med Mol Imaging. 2011;38:2025-36.

162. Abadi S, Brook OR, Rispler S, Frenkel A, Engel A, Keidar Z. Hybrid cardiac SPECT/64-slice CTA-derived LV function parameters: correlation and reproducibility assessment. Eur J Radiol. 2010;75:154-8.

163. Rispler S, Aronson D, Abadi S, Roguin A, Engel A, Beyar R, et al. Integrated SPECT/CT for assessment of haemodynamically significant coronary artery lesions in patients with acute coronary syndrome. Eur J Nucl Med Mol Imaging. 2011;38:1917-25.

164. Tamam M, Mulazimoglu M, Edis N, Ozpacaci T. The value of attenuation correction in hybrid cardiac SPECT/CT on inferior wall according to body mass index. World J Nucl Med. 2016;15:18-23.

165. Kennedy JA, Israel O, Frenkel A. Directions and magnitudes of misregistration of CT attenuation-corrected myocardial perfusion studies: incidence, impact on image quality, and guidance for reregistration. J Nucl Med. 2009;50:1471-8.

166. Koopman D, van Dalen JA, Slump CH, Lots D, Timmer JR, Jager PL. Impact of image processing in the detection of ischaemia using CZT-SPECT/CT. Nucl Med Comm. 2015;36:60-8.

167. Matsuo S, Nakajima K, Onoguchi M, Wakabayash H, Okuda K, Kinuya S. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects. Ann Nucl Med. 2015;29:452-9.