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FIG. 1. a) The position of three different data points A, B, and C in the classical space. b) After encoding classical data into
quantum Hilbert space, the kernel entries corresponds to the data points in the quantum space decrease (distances increase).
In this case the geometry difference (GDQ) score decreases.

The math and details are in support of the main text. The source code of the implemented classical and quantum
algorithms can be accessed by the link:

Appendix A: Geometry difference and its physical meaning

In order to link amplitude data encoding, distance function, and the quantum kernel to the prediction advantage,
the geometric difference GDQ is used which only depends on the dataset, but is independent of the labels. The
geometric difference measures the similarities of different distance functions and different kernel functions of the same
dataset. The geometric difference machine learning models based on two different kernel functions KQ (quantum
kernel) and KC (classical kernel) is defined by [1]

GDQ = G(KC ||KQ) =

√
∥
√
KQ(KC)−1

√
KQ∥ (A1)

where ∥.∥ is the spectral norm of the resulting matrix. GDQ defined in Eq. (A1) measures the difference between how
a quantum ML vs classical ML sees the relation between data [1]. If GDQ ≈ 1., then the prediction performance of
quantum ML models and classical ML models are the same.

The physical meaning of GDQ is explained as follows: a kernel matrix is a semi definite matrix whose diagonal
entries are 1 and off-diagonal entries are less than 1. The off-diagonal entries of a kernel matrix can be seen as
measures of distance between data points in the same feature space. Mathematically, the off-diagonal entry of a
kernel matrix K(xi, xj) is large when the distance between xi and xj is small. Fig. 1 shows the positions of three data
points A, B, and C in classical and quantum feature spaces, respectively, with the arrows representing the distances
between data points. After encoding data from classical Euclidean space into quantum Hilbert space, the distance
between data points increases. From the kernel point of view, the entries of classical kernel matrix are larger compared
to the entries of the quantum kernel matrix.

For example, if the classical kernel matrix corresponds to Fig. 1(a) is

KC =

1.0 0.9 0.8

0.9 1.0 0.7

0.8 0.7 1.0

 (A2)

and the quantum kernel matrix corresponds to Fig. 1(b)

KQ =

1.0 0.3 0.3

0.3 1.0 0.2

0.3 0.2 1.0

 (A3)

then the GDQ = 2.681.
In the second case, if the classical kernel matrix corresponds to Fig. 2(a) is

KC =

1.0 0.3 0.3

0.3 1.0 0.2

0.3 0.2 1.0

 (A4)
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FIG. 2. The position of three different data points A, B, and C in the classical space. b) After encoding classical data into
quantum Hilbert space, the kernel entries correspond to the data points in the quantum space increase (distances decrease).
In this case GDQ increases.

and the quantum kernel matrix corresponds to Fig. 2(b) is

KQ =

1.0 0.9 0.8

0.9 1.0 0.7

0.8 0.7 1.0

 (A5)

then the GDQ = 0.924.
The first classical kernel that we used in this study was homogeneous linear kernel which is the simplest kernel

function to compute. The linear covariance function is given

Klinear(x1, x2) = xT1 x2 (A6)

The second kernel function is the Matern kernel. The Matern class of covariance function is given by

KMatern(x1, x2) =
21−ν

Γ(ν)

(√
2νr(x1, x2)

l

)ν

Kν

(√
2νr(x1, x2)

l

)
(A7)

where r2(x1, x2) = (x1 − x2)
T (x1 − x2), ν and l are positive values. Kν is a modified Bessel function. The Matern

covariance function in Eq. (A7) becomes especially simple when ν is half integer: ν = p+ 1
2 and p is a non-negative

integer. In this case the covariance function is product of a exponential and a polynomial of order p [2]. The parameter
ν controls the smoothness of the function. For smaller ν results in the less smooth kernel function. For ν = inf, the
kernel function equivalent to the RBF kernel and ν = 0.5 to the absolute exponential kernel. Other values for ν are
3
2 , and

5
2 , which are easy to compute. The computational cost are approximately 10 times higher for other values of

ν in comparison with ν = 0.5, 1.5, 2.5, and ∞, since they require to evaluate the modified Bessel function. In another
numerical simulation, we chose l = 1.0 and ν = 3.0 for the Matern kernel in Eq. (A7) such that the GDQ ≈ 1s for
almost all 10-fold. The predictive performance for the classical ML algorithms cSVM and cGP were the same as the
quantum ML algorithms qSVM and qGP.

Appendix B: Data encoding

Noticeable quantum speedup of many quantum machine learning algorithms for real-world datasets [3–5] are due
to amplitude encoding, since N numerical features of the data vectors can be represented with log2N number of
qubits of the quantum states in the quantum computer [6, 7]. The majority of researches for amplitude encoding with
single-qubit and two-qubit gate operations rely on algebraic methods. Algebraic methods are guaranteed to work for
any problem size of qubits, but are likely to result in quantum circuits that are exponentially large [8–11]. Another
approach is via exploration of possible circuits topology in conjunction with classical optimization techniques [12, 13].
This approach which guarantees to find the smallest circuit for data encoding with few qubits.

Following we introduce two circuit optimization methods. The first method can be implemented with only quantum
simulators, but the second with both quantum simulators and current NISQ devices. Both methods give the same
results, if one uses the quantum simulator.
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|0⟩ Ry(θ1)

|0⟩ Ry(θ0) Ry(θ2)

FIG. 3. Quantum circuit for mapping a four-dimensional state vectors to two qubit states by applying three single Ry rotation
gates with rotation angles of θi with a CNOT gate in between. θi are obtained using optimization of cost function given in
Eq. (B2).

|0⟩ Ry(α1)

|0⟩ Ry(α0) Ry(α2)

FIG. 4. Quantum circuit for mapping a four-dimensional state vectors to two qubits states by applying three single Ry rotation
gates with two CNOT gates. This quantum circuit relies on algebraic method. The rotation angles are obtained analytically.

a. Circuit optimization with noiseless quantum simulator

We start by describing our data encoding strategy via a numerical approach. Representing classical data as quantum
states is an important step for QML applications, since most QML algorithms require efficient quantum access to
classical data. A data encoder is a quantum circuit that, given a classical data vector a⃗ = (a0, a2, . . . , aN−1) ∈ RN ,
prepares quantum state

1

∥a∥

N−1∑
i=0

ai|i⟩. (B1)

Eq. (B1) represents an amplitude encoding state. Fig. 3 shows the smallest quantum circuit for amplitude encoding
of classical data with 4-feature counts. A quantum circuit for amplitude encoding with algebraic approach can also be
seen in Fig. 4. See Ref. [14] for how to obtain the αi rotation angles. In the next step, we use classical optimization
methods to find the values for the θi rotation angles in Fig. 3 through minimizing of a cost function on a classical
computer. The cost function is defined as [8]

C(V (θ⃗), U) =
1

N2

N−1∑
j=0

N−1∑
k=0

|Vjk(θ⃗)− Ujk| (B2)

where Ujk is jkth element in the known unitary matrix U given by quantum circuit in Fig. 4 and Vjk(θ⃗) is jkth

element in the target unitary matrix V given by quantum circuit in Fig. 3. The desired values for θi are computed
when the right side of the Eq. (B2) converges to zero. Therefore, an exact quantum circuit for V can be found.
We now perform a structure update on previous quantum circuit for two qubits to find the quantum circuit for

three qubits. This time two-qubit gates on the second and third qubits and the first and the third qubits are applied,
as can be seen in Fig. 5. To obtain the values of the free parameters in Fig. 5, the same procedure for the two-qubit
case is followed. Iterating this procedure then leads to a design for quantum circuits for larger number of qubits.
This approach is called fix structure strongly entangling layer, since all qubits are entangled with each other using
two-qubit gates. Fig. 6 shows the quantum circuit for amplitude data encoding with the algebraic method which
includes six CNOT gates.

Figs. 7, 8, and 9 show the cost function C(V (θ⃗), U) as a function of the number of iterations for n = 2, 3, and
4 qubits. The cost functions converge to the desired global minimum with the gradient-based, LBFGS, and Powell
optimization methods after 100, 3, and 3 iterations, respectively.

Figs. 10 and 11 show the quantum circuits for data encoding with 4 and 5 qubits relying on algebraic method. As
can be seen from Figs. 10, 11, fourteen CNOTs are applied to encode a vector with 16-components into a quantum
state and thirty CNOTs in the 32-components case. In general 2n−2 CNOT gates and 2n−1 single-qubit rotation Ry

are applied to map 2n-components vector onto n qubits quantum state given in Eq. (B1) based on algebraic method.
While, with numerical approach, only six CNOTs are needed to encode 16-components into a quantum state (see
Fig. 12) and ten CNOTs for 32-components. The shorter depth quantum circuits help to reduce the run time, and as
well as the quantum noise of the QML algorithms on NISQ devices.
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|0⟩ Ry(θ0) Ry(θ4)

|0⟩ Ry(θ1) Ry(θ3)

|0⟩ Ry(θ2) Ry(θ5) Ry(θ6)

FIG. 5. Topology of the quantum circuit for encoding a eight-dimensional state vector to three-qubit states relying on numerical
optimization. Seven single Ry rotation gates with three CNOT gates are applied for amplitude data encoding.

|0⟩ Ry(α0)

|0⟩ Ry(α1) Ry(α3)

|0⟩ Ry(α2) Ry(α4) Ry(α5) Ry(α6)

FIG. 6. Topology of the quantum circuit for encoding a eight-dimensional state vector to three-qubit states relying on algebraic
approach. Seven single Ry rotation gates with six CNOT gates are applied for amplitude data encoding.

FIG. 7. Result of performing continuous parameter optimization using the gradient descent method. The minimum of the cost
function is achieved after 100 iterations with the maximum cost error tolerance 10−2.

FIG. 8. Result of performing continuous parameter optimization using he LBFGS method. The minimum of the cost function
is achieved after a maximum of 3 iterations for n = 2, 3, and 4 qubits with the maximum cost error tolerance 10−3.
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FIG. 9. Result of performing continuous parameter optimization using the Powell method. The minimum of the cost function
is achieved after a maximum of 3 iterations for n = 2, 3, and 4 qubits with the maximum cost error tolerance 10−2.

FIG. 10. Quantum circuit for preparing the quantum state |ψ⟩ = 1
∥a∥

∑15
i=0 ai|i⟩. This quantum circuit can encode a vector

with 16-components into a quantum state with four qubits.

b. Circuit optimization with NISQ devices

The cost function was defined in Eq. (B2) can not be implemented on NISQ devices, since the current NISQ devices
can only estimate the expectation value of observables. The strategy is to define a new cost function C through

evaluating the expectation values with a NISQ device, while a classical optimizer trains the parameters θ⃗. For this
purpose, we define a cost function which is a quadratic distance between UT and parameterized unitary U(θ) [15]

C(θ⃗) = 1− |⟨0|UTU(θ⃗)|0⟩|2. (B3)

We first estimate the term |⟨0|UTU(θ⃗)|0⟩|2 using a Swap Test circuit (see Fig. 13) on a NISQ device [12]. Following

the cost function C(θ⃗) on a classical computer using Eq. (B3) is calculated and the optimization approaches are

applied. Each iteration for optimization can include several calls to the NISQ device. The vector θ⃗ in the ansatz U(θ⃗)

is adjusted in a hybrid quantum-classical optimization loop until the cost C(θ⃗) is converged below a threshold.

Appendix C: Gate Decomposition

In order to execute a quantum circuit on different NISQ architectures, two-qubit gates must satisfy the coupling
constraints of the architecture [16]. Since NISQ devices commonly support only single-qubit and two-qubit gate

FIG. 11. Quantum circuit for preparing quantum the state |ψ⟩ = 1
∥a∥

∑31
i=0 ai|i⟩. This quantum circuit can encode a vector

with 32-components into a quantum state with five qubits.
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|0⟩ Ry(α0) Ry(α7) Ry(α12)

|0⟩ Ry(α1) Ry(α4) Ry(α9)

|0⟩ Ry(α2) Ry(α5) Ry(α8) Ry(α10)

|0⟩ Ry(α3) Ry(α6) Ry(α11) Ry(α13) Ry(α14)

FIG. 12. Topology of the quantum circuit for mapping a sixteen-dimensional vectors to three qubits relying on numerical
approach. Fifteen single Ry rotation gates with six CNOT gates are applied for amplitude data encoding.

|0⟩
|0⟩a H H

|0⟩

U(θ⃗)|0⟩

|0⟩

|0⟩

UT|0⟩

|0⟩

FIG. 13. Quantum circuit to compute |⟨0|UTU(θ⃗)|0⟩|2 for optimization of 3 qubits data encoding cases with NISQ devices.

The target unitary UT encodes the features of data-points via algebraic method into amplitudes of quantum states [10]. U(θ⃗)

is the parameterized circuit. The output result of the quantum circuit after measurement yields the value of |⟨0|UTU(θ⃗)|0⟩|2.

operations, complex gate operations must be decomposed into supported gates before mapping on noisy hardware.
Owing to the specific architectures of different NISQ devices, two-qubit gate operations must satisfy the coupling
constraint imposed by the coupling map of physical qubits [16], i.e., two-qubit gate operations can only be performed
between certain pairs of qubits. For example, if qi is the control qubit and qj is the target qubit, CNOT(qi, qj) can
only be applied if there is coupling between qi and qj . Otherwise CNOT(qi, qj) must be mapped into executable
CNOT gate operations. The compilation of quantum circuit for the Swap Test and the Hadamard Test on NISQ
devices are computationally expensive due to existence of Toffoli and three-qubits controlled swap (Fredkin) gates
(See Figs. 14, 15, and 16). To compile the quantum circuits for the Swap Test and the Hadamard Test on the 21-
qubits IonQ quantum machine (see Appendix G), we decomposed the non-Clifford gates (Toffoli and Fredkin gates)
to single-qubit and CNOT gates. Each Fredkin gate is decomposed into two CNOTs and one Toffoli gate as Fig. 14
shows [17].

The next step is to decompose Toffoli gate in Fig. 14 with Margolus technique [17–19] and Qiskit [20]. The Toffoli
gate requires six CNOTs with the transpilation technique of Qiskit as can be seen from Fig. 15, but three CNOTs
with Margolus’ technique (see Figure. 16).

where

G =

[
cos π

8 − sin π
8

sin π
8 cos π

8

]
and G† is the hermitian conjugate of G.
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cswap

q0

q1

q2

=

Toffoli

q0

q1

q2

FIG. 14. Decomposition of CSWAP(q0, q1, q2) to two CNOTs and one Toffoli gate.

q0

q1

q2

=

q0 T

q1 T T †

q2 H T † T T † U3(
π
2
, 0, −3π

4
)

FIG. 15. Decomposition of Toffoli gate with Qiskit transpile function. Toffoli gate is decomposed to six CNOT gates and eight
single qubit gates.

The CNOT gate can not be implemented directly on the IonQ quantum machine. The physical two-qubit gate
available to the IonQ quantum machine is the Rxx(ξ) gate [21], defined as follow:

Rxx(ξ) =

 cos ξ 0 0 −i sin ξ
0 cos ξ −i sin ξ 0
0 −i sin ξ cos ξ 0

−i sin ξ 0 0 cos ξ


The parameter ξ depends on the pair of ions the gate is being applied. Fig. 17 shows the equivalent quantum circuit
for CNOT with ξ = π

4 .
Another gate operation which is very important and must be decomposed before mapping Hadamard test circuit

(see Fig. 23) on the 21-qubits IonQ quantum machine is single control rotation y rotation CRy(θ) gate. Using the

Qiskit transpile function, each CRy(θ) gates can be decomposed into two single qubit y rotation gate Ry(
θ
2 ) and two

CNOT as Fig. 18 shows.

Appendix D: Quantum machine learning algorithms for binary classification

1. Quantum distance classifier

First, we divide the train set, with M number of samples, based on their labels {a, b ∈ R} into two subset {P} and
{Q}, where {P} contains only label a with the number of samplesMP and {Q} contains only label b with the number
of samples MQ with MP +MQ = M . In the quantum distance classifier (qDC), first, the distance is calculated
between the state vector of a test sample and each state vector of the train sample in set P and set Q and, then,
assigns a label of the test sample to the label of the closest set. The task is to determine the label of the given test
sample yk, if yk = a or yk = b. Mathematically, if |v⟩ is the state vector of the test sample as well as |u⟩ ∈ P and

q0

q1

q2

=

q0

q1

q2 G G G† G†

FIG. 16. Decomposition of Toffoli gate to three CNOTs and four single qubit gates with Margolus technique.
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|0⟩ Ry(
π
2
)

Rxx(
π
4
)

Ry(
−π
2
) Rz(

−π
2
)

|0⟩ Rx(
−π
2
)

FIG. 17. Decomposition of CNOT to two qubit Mølmer–Sørensen gate Rxx(ξ).

q0

q1 Ry(θ)

=

q0

q1 Ry(
θ
2
) Ry(

θ
2
)

FIG. 18. Decomposition of CRy(q0, q1) to two CNOTs and two Ry gates with half angle rotations.

|w⟩ ∈ Q, then the label of |v⟩ is determined by yk = a, if min d(|u⟩ − |v⟩) ≤ min d(|w⟩ − |v⟩), otherwise yk = b. The
distance between vectors is given by [22]

d(|u⟩ − |v⟩) = ∥|u⟩∥∥|v⟩∥ − ⟨u|v⟩ (D1)

where ∥.∥ is the norm l2 of a vector in Eq. (D1) where ∥|u⟩∥ = 1 and ∥|v⟩∥ = 1. Therefore, the task is to calculate
the inner product ⟨u|v⟩ with a NISQ device.

2. Quantum kernel Gaussian Process

Consider a binary classification problem with a train dataset which we call D such that

D = (X⃗, y) = {x⃗i, yi}i=0···M−1 , (D2)

where x⃗i is an N -dimensional vector and labels yi ∈ {−1, 1}. The task is to model a function which can generate the
labels within a dataset from given input vectors such that

y = f(X⃗) + ϵnoise, (D3)

where ϵnoise ∼ η(0, σ2) represents a distributed Gaussian noise with zero mean and variance σ2. The function of the
Gaussian process algorithm is to predict an unknown label y∗ for a given test data vector x⃗∗. A scalar Gaussian
Process (GP ) is defined as the multivariate normal distribution GP (m(.), k(., .)), where m(.) is a mean function and
k(., .) is a covariance function. The joint distribution of y as the label of the train data and y∗ as the unknown label
of N−dimensional vector test x⃗∗ is defined

y∗|(X⃗, x⃗∗, ϵ2noise, y) ∼ GP (m, k), (D4)

where m = KT
∗ (K + Σ)−1y, k = K∗∗ + Σ −KT

∗ (K + Σ)−1K∗, and Σ = σ2I is a M ×M diagonal matrix. K is the
train kernel matrix, K∗ is the train-test kernel matrix, KT

∗ is the test-train kernel matrix, and K∗∗ is the test kernel

matrix. In the binary classification, the joint probability for y∗ to be 1 at x⃗∗ given train dataset X⃗ and label y can
be approximated by [23]

p(y∗ = 1|y, X⃗, x⃗∗) ≈ S(κm), (D5)

where S(x) = 1
1+e−x , a sigmoid function, and κ = 1√

1+πk
8

. Tresholding the value S(κm) yields the binary output as

following

y∗ =

{
1 if S(κm) ≥ 0.5

−1 otherwise
. (D6)

For the qkGP algorithm, the NISQ device is used three times to estimate K, K∗, and K∗∗ (see Fig. 19).
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3. Quantum kernel machine learning without optimization

For the quantum kernel SVM without optimization (qsSVM) [22], the standard form of the kernelized binary
classifier is

y∗ = sgn

( M∑
i=1

yiα
∗
iK(x⃗i, x⃗

∗)

)
(D7)

where y∗ is the unknown label of the test dataset x⃗∗, yi is the label of the i
th train sample, α∗

i is the ith component of
the support vector α⃗∗ = (α∗

1, α
∗
2, ..., α

∗
M ), M is the number of train data, and K(x⃗i, x⃗

∗) is the kernel of the train-test
pairs.
For a given dataset

D = (X⃗, y) = {x⃗i, yi}i=0···M−1 , (D8)

where x⃗i is an N−dimensional vector and labels yi ∈ {−1, 1}, one option to calculate the support vector α⃗∗ without
optimization of complex function as presented in [22] is to set uniform weight α∗

i = 1, in case of balanced dataset,
IR = 0.5, where IR = a

b with a being the number of minority class and b being the total number of samples.
Otherwise, α∗

i = IR for the majority class and α∗
j = 1 − IR for the minority class applies. Thresholding the value

yiα
∗
iK(x⃗i, x⃗

∗) yields the binary output

y∗ =

{
1 if

∑M
i=1 yiα

∗
iK(x⃗i, x⃗

∗) ≥ 0
−1 otherwise

. (D9)

Fig. 20 represents a flowchart of the quantum kernel SVM (qkSVM) algorithm without optimization. NISQ device
is used only once to estimate the kernel matrix of the train-test pairs.

Appendix E: Quantum neural network

The most basic and key ingredients of quantum neural network models are parameterized quantum circuits. In
general, a quantum neural network (QNN) approach is the approximation of a complex function by another pa-
rameterized function f(w⃗, b), which might be easier to compute with quantum circuits. The task is to find real
parameters w⃗ and b which are expected to minimize a specific loss function l(w⃗, b;D) for a given training dataset
D = {(x⃗i, yi) : x⃗i ∈ RM , yi ∈ {−1, 1}}i=0,...,M−1. The goal of the QNN (a.k.a VQC) is to reduce the time complex-
ity of the evaluation of the cost function l(w⃗, b;D) and to improve the performance of classification in some cases
compared with its classical counterpart, the Classical Neural Network (CNN). We follow a QNN method very similar
to [24]. The QNN protocol is composed of five steps. First, the classical train data are encoded into n qubits quantum

state vectors by applying a sequence of unitary gate operations on |0⟩⊗n
which will result in U(x⃗) |0⟩⊗n

= |ψ(x⃗)⟩.
Second, parameterized circuit U(w⃗) is applied to |ψ(x⃗)⟩. The result is the final state U(w⃗) |ψ(x⃗)⟩ = |ψ(x⃗, w⃗)⟩. Third,
the probability of the measurement of the first qubit q0 on the basis of |1⟩ of n qubits quantum state |ψ(x⃗, w⃗)⟩ yields

P (q0 = 1|x⃗, w⃗) = |⟨1|ψ(x⃗, w⃗)⟩|2. (E1)

Eq. (E1) can also be written down as the expectation value of the measurement operator σz applied to the first of n
qubits using Dirac notation,

P (q0 = 1|x⃗, w⃗) = E(σz)

2
+

1

2
(E2)

and

E(σz) = ⟨U†(w⃗)ψ(x⃗)|(σz ⊗ I ⊗ ...⊗ I)U(w⃗)|ψ(x⃗)⟩ (E3)

where U(w⃗) is a quantum circuit model includes CNOT and general single-qubit rotation gate

U(w⃗) = U(ϕ, θ, ω) = Rz(ω)Ry(θ)Rz(ϕ) =

[
e

−i(ω+ϕ)
2 cos( θ2 ) −e

−i(ϕ−ω)
2 sin(α2 )

e
−i(ϕ−ω)

2 sin( θ2 ) e
i(ω+ϕ)

2 cos( θ2 )

]
(E4)
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FIG. 19. Schematic of the Gaussian Process algorithm for binary classification. NISQ device is used three times to estimate
K(x⃗i, x⃗j), K(x⃗∗i , x⃗

∗
j ), and K(x⃗i, x⃗∗j ). After estimation of kernel matrix in each step of the flowchart, error mitigation technique

proposed in Appendix H is used to degrade the effects of noise and errors.

Like CNN, a learnable parameter is added to Eq. (E2) as bias term b,

P (q0 = 1|x⃗, w⃗) =
(
E(σz)

2
+

1

2

)
+ b (E5)
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FIG. 20. Schematic of the qkSVM for binary data classification. First, the train data vector x⃗i and the test data vector x⃗∗

are prepared on a classical computer. Next, the train data and the test data data are encoded into quantum states |u⟩ and
|v⟩ followed by computing the kernel matrix for all pairs of the train-test data K(x⃗, x⃗∗) with a NISQ device. Then the error
mitigation technique is utilized to reduce the effects of noise and errors on the NISQ device. If α⃗∗ = (α∗

1, α
∗
2, ..., α

∗
M ) are

considered to be a solution of the support vector, the binary classifier can be constructed based on Eq. (D3).

In step 4, the loss function given by l(w⃗, b;D) is minimized

l(w⃗, b;D) =

M−1∑
i=0

|P (x⃗i, w⃗, b)− yi|2 (E6)

After finding the optimal parameters w⃗, b, a binary classifier can be constructed based on Eq. (E5). To find the label
of the test vector x⃗t,

y∗ =

{
1 if P (x⃗t, w⃗opt, bopt) ≥ 0.5(1− b)

−1 otherwise
. (E7)

where w⃗opt, and bopt are the solution to the minimization of loss function of Eq. (E6). In order to minimize Eq. (E6),
gradient descent method is used to update parameters, for the given dataset D. Fig. 21 shows a flowchart of the
quantum neural network (QNN).

Appendix F: CML and QML hyper-parameters

The values of the hyper-parameters is documented in Tables I to VI.
All non-specified hyper-parameters were kept on the default values as specified by the official scikit-learn documen-

tation (https://scikit-learn.org/).
For QML algorithms, the hyper-parameters for quantum kernel ML methods were considered the same as for

classical kernel support vector machine.
For the quantum neural network classifier, we utilized the same parameters as we used for classical neural network

with Adam optimizer. The only different is that instead of using activation function (ReLu function) in classical case,
quantum measurement gate is applied for the QNN. The quantum distance classifier and quantum kernel Gaussian
process are non-parameterized algorithms.

Appendix G: Software and hardware

For classical machine learning algorithms we use scikit-learn [25]. Qiskit [20] was used for experimenting with
quantum circuits and Pennylane [26] for simulating them. We utilize Pennylane in combination with Pytorch for
circuit optimization purpose. For the estimation of the kernel matrices and the inner products with the Swap Test
and Hadamard Test on NISQ device, we choose the 21-qubit IonQ quantum machine. The gate-based IonQ quantum
machine was available for this study as cloud computing services, hosted by Microsoft Azure [27]. Fig. 22 shows
the coupling maps of the 21-qubit IonQ quantum machine. Each circle represents a trapped ion qubit. The lines
in-between the qubits represent physical connections for implementation of two qubit gate. The single-qubit and
two-qubit gate error rates can also be seen for the IonQ quantum machine and also via https://IonQ.com/technology.

https://scikit-learn.org/
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FIG. 21. Input data vectors are converted to circuit parameters. Then classical data is encoded into amplitudes of quantum
states using a quantum circuit. Quantum measurement statistics are collected by repeatedly running the quantum circuit and
performing measurements. Extracted information from the measurement statistics are obtained and the output label of the
quantum classifier are produced by adding a bias term b (classical postprocessing). The loss function obtained from Eq. (E6)
is minimized using Adam optimizer to yield the optimal parameters.
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Random Forest for regression
Hyper-parameters Value
number of estimators 100
criterion “gini”
max depth None
min samples split 2
max features “auto”
min samples leaf 1

TABLE I. Hyper-parameters for random forest regression algorithm. This algorithm was utilized for learning-based error
mitigation.

k-nearest neighbors
Hyper-parameters Value
number of
neighbours

5

weights “distance”
p 2
number of jobs -1

TABLE II. Hyper-parameters for classical k-nearest neighbors.

classical kernel support vector machine
Hyper-parameters Value
penalty “l2”
loss “squared hinge”

TABLE III. Hyper-parameters for classical kernel support vector machine.

classical neural network
Hyper-parameters Value
hidden layer sizes (100, )
activation “relu”
solver “adam”
alpha 0.0001
batch size “auto”
learning rate “constant”
learning rate initial 0.001
max iteration 200
shuffle true
tol 0.0001
early stopping Flase
validation fraction 0.1
beta 1 0.9
beta 2 0.999
epsilon 1e−8

TABLE IV. Hyper-parameters for classical neural network.

quantum kernel support vector machine
Hyper-parameters Value
penalty “l2”
loss “squared hinge”

TABLE V. Hyper-parameters for quantum kernel support vector machine with optimization.

quantum kernel support vector machine
Hyper-parameters Value
imbalance ratio 0.5

TABLE VI. Hyper-parameters for quantum kernel support vector machine without optimization.
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quantum kernel support vector machine
Hyper-parameters Value
length scale 1.0
nu 3.0

TABLE VII. parameters for classical Matern kernel.

FIG. 22. Topology graph and coupling map of the 21-qubits IonQ quantum machine [29].

The elementary gates used on the IonQ quantum machine are single qubit gates and maximally entangling two qubit
Mølmer–Sørensen gate (see Fig. 17 in Appendix B for decomposition of CNOT to Mølmer–Sørensen (Rxx)). For
the IonQ quantum machine, physical qubits are implemented as rare earth Ytterbium-171 ions (171Yb+) trapped by
electric fields and manipulated with a mode-locked 355nm laser which drives gate operations. The initial state of each
171Yb+ qubit has a coherence time of T1 ≈ 107µs, T2 ≈ 200, 000µs.

The estimation of the kernel matrices and the inner product were done by measuring the state of an ancilla qubit.
To do this with the IonQ quantum machine two species of ions are chosen: one for measuring the ancilla qubit and one
for the other qubits that are not measured [28]. Reading the ion as an ancilla qubit is done by shining a resonant laser
with a wavelength of 369.5nm such that the photon emitted by the ancilla qubit will not excite the other qubits [28].

Appendix H: Error mitigation strategy

Noise and errors are significant issues for capability of the current NISQ devices. Two important types of noise
and errors in NISQ devices are gate errors and readout errors. The gate errors mostly result from miscalibration or
imperfection in the control hardware and their interaction with the qubits. The gate errors include incoherent and
coherent errors. Coherent errors are dominant gate errors [30]. Here we utilized a method by which the proper error
mitigation strategy can instead be learned ab initio. On the contrary to other error mitigation methods, learning-
based regression methods for error mitigation do not depend on the noise model of NISQ devices [31]. The readout
errors concern the measuring of incorrect qubit values e.g. reading zero while the qubit is in the one state and vice
versa.

First, the train dataset {xnoisy, xideal} via executions of a Swap Test circuit or a Hadamard Test circuit (see
Figs. 23 and 24 in Appendices I and J) on NISQ device {xnoisy} and noiseless simulator {xideal} were obtained. Then
the Random Forest regression algorithm was trained with the train dataset {xnoisy, xideal} to learn the relationship
between xideal and xnoisy

xideal = f(xnoisy). (H1)

Now Assume that we are given new {xnoisyt } values that has been obtained from the same Swap Test circuit (or the

same Hadamard Test) on the NISQ device. Using Eq. (H1) and the new noisy values {xnoisyt } as input, the mitigated

values are extrapolated xnoisym = f(xnoisyt ).

Appendix I: Estimation of the inner product

Fig. 23 shows the quantum circuit for estimation of the real part of ⟨u|v⟩ with the Hadamard Test. To estimate the
real part of ⟨u|v⟩ on the quantum computer with the Hadamard Test, the train and test data needs to be prepared in
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data processing

data encoding

|0⟩

...

|0⟩ H X X H

|0⟩⊗n U V

1 2 3 4

FIG. 23. Quantum circuit computes the real part of the inner product. Data processing step includes superposition, entangle-
ment, and interference. The Hadamard gate puts the ancilla qubit |0⟩a into uniform superposition. A single-controlled unitary
gate entangles the exited state of the ancilla qubit with the train data state vector (|u⟩) = U |00 . . . 0⟩). Another single unitary
controlled gate entangles the state of the test data (|v⟩) = V |00 . . . 0⟩) with the excited state of the ancilla qubit. A second X
gate flips the ancilla qubit. The Hadamard gate on the ancilla qubit interferences train and test data state vectors. The ancilla
qubit is measured on the |0⟩a basis to estimate the value of |⟨u|v⟩| from Eq. (I3).

a quantum state as

1√
2
(|0⟩a|u⟩+ |1⟩a|v⟩) (I1)

where |u⟩ and |v⟩ are the quantum states for the train and test datasets, respectively. Then the Hadamard gate on
the ancilla qubit interferences the train vector |u⟩ with the test vector

1

2

(
|0⟩a(|u⟩+ |v⟩) + |1⟩a(|u⟩ − |v⟩)

)
. (I2)

Finally, the measuring quantum state given in Eq. (I2) in the computational basis |0⟩a gives

Pr(|0⟩a) =
1 + ⟨u|v⟩

2
, (I3)

where Pr(|0⟩a) is the value of the probability of measurement on the |0⟩a state of Eq. (I2) and ⟨u|u⟩ = ⟨v|v⟩ = 1.
Since our datasets are real, the NISQ device was used only once to calculate ⟨u|v⟩.

Appendix J: Estimation of the kernels with the Swap Test

Fig. 24 shows the quantum circuit for estimating |⟨u|v⟩|2 with a Swap test. First the quantum circuit encoder are
applied (see Appendix B) to encode train and test data into quantum states |u⟩ = U |00 . . . 0⟩ and |v⟩ = V |00 . . . 0⟩,
respectively. The Hadamard gate is applied on to the ancillary qubit |0⟩a to create a superposition of |u⟩|v⟩, i.e.,

1√
2
(|0⟩a|u⟩|v⟩+ |1⟩a|u⟩|v⟩) (J1)

The application of the single controlled-swap gates on the state given in Eq. (J1) generates an entangled state
1√
2
(|0⟩a|u⟩|v⟩ + |1⟩a|v⟩|u⟩). Then, another Hadamard gate is used to interfere the product state of the state vectors

for train and test such that

1

2

(
|0⟩a(|u⟩|v⟩+ |v⟩|u⟩) + |1⟩a((|u⟩|v⟩ − |v⟩|u⟩)

)
. (J2)

The quantum state given in Eq. (J2) is measured in the computational basis of the |0⟩a state to yield the probability

Pr(|0⟩a) =
1 + |⟨u|v⟩|2

2
, (J3)

where Pr(|0⟩a) is the probability of measurement on the |0⟩a state of Eq. (J2).
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data processing

encoding

|0⟩

...

...

|0⟩a H H

|0⟩
U

swap

|0⟩

|0⟩
V

|0⟩

2 31

FIG. 24. Quantum circuit to compute kernels. 1, 2, and 3 satnd for data encoding, data processing, and measurement,
respectively. Data processing step includes superposition, entanglement, and interference. The models of quantum circuits U
and V encode data into amplitudes of quantum states |u⟩(= U |00 . . . 0⟩) and |v⟩(= V |00 . . . 0⟩). The quantum state of Eq. (J2)
is measured on the |0⟩a basis to estimate the value of |⟨u|v⟩|2 from Eq. (J3).

Appendix K: CLAIM: Checklist for Artificial Intelligence in Medical Imaging

In order to aid authors of AI manuscript, a checklist for AI in Medical Imaging has been proposed in this reference
[32].

Section/
Topic

No. Item

TITLE/
ABSTRACT

1 Identification as a study of AI methodol-
ogy, specifying the category of technology
used (e.g., deep learning)

Classic and quantum machine learning (ML) for
predicting clinical endpoints from PET radiomics
data.

2 Structured summary of study design,
methods, results, and conclusions

See ”Abstract” in manuscript.

INTRODUCTION
3 Scientific and clinical background, includ-

ing the intended use and clinical role of the
AI approach

Predicting clinical endpoints from 121 PSMA-11
prostate with low-vs-high Gleason risk, 84 11C-
Methionine (MET) glioma with 3-years survival,
and 335 18F-FDG PET lung cases with 2-years
survival.

4 Study objectives and hypotheses Quantum ML in combination with error mitiga-
tion techniques makes clinical endpoint predic-
tion from various cancer cohorts based on PET
radiomics feasible on real quantum computers.

METHODS
Study Design 5 Prospective or retrospective study Prostate: Pre-study of a prospective clinical trial

NCT02659527. Glioma and lung: retrospective.
6 Study goal, such as model creation, ex-

ploratory study, feasibility study, non-
inferiority trial

Feasibility and comparison study.

Data 7 Data sources Open-access:
Prostate: https://osf.io/3nkx8/,
Glioma: https://osf.io/nkhp8/,
Access upon request: Lung

8 Eligibility criteria: how, where, and when
potentially eligible participants or stud-
ies were identified (e.g., symptoms, results
from previous tests, inclusion in registry,
patient-care setting, location, dates)

See CONSORT (Figure 1).
See DOI: 10.1007/s00259-020-05140-y,
DOI: 10.2967/jnumed.117.202267,
DOI: 10.1007/s00330-022-08999-7
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9 Data pre-processing steps See ”Feature ranking and selection” in
manuscript.

10 Selection of data subsets, if applicable NA
11 Definitions of data elements, with refer-

ences to Common Data Elements
Prostate: Gleason risk ”high” vs ”low” mapped
to 1 and 0 respectively.
Glioma: survived 3-years yes/no mapped to 1/0
respectively.
Lung: survived 2-years yes/no mapped to 1/0 re-
spectively. See ”Dataset” in manuscript for de-
tails.

12 De-identification methods Imaging data was anonymized upon downloading
it from PACS via the in-built PACS anonymizer
(Hermes Hybrid 3D ver. 4.0.0.)

13 How missing data were handled No missing data was present.
Ground Truth 14 Definition of ground truth reference

standard, in sufficient detail to allow
replication

See 11.

15 Rationale for choosing the reference stan-
dard (if alternatives exist)

Clinical relevance.

16 Source of ground-truth annotations; qual-
ifications and preparation of annotators

Prostate: Full-mount histopathology slices
from patients underwent radical prostatectomy.
Glioma and lung: follow-up. See ”Dataset” in
manuscript for details.

17 Annotation tools Hermes Hybrid 3D ver. 4.0.0 to delineate and
annotate lesions.

18 Measurement of inter- and intrarater vari-
ability; methods to mitigate variability
and/or resolve discrepancies

Multiple nuclear medicine physicians involved in
delineation.
See DOI: 10.1007/s00259-020-05140-y,
10.2967/jnumed.117.202267,
10.2967/jnumed.117.202267 for details.

Data Partitions 19 Intended sample size and how it was
determined

Sample size was given according to prior studies
providing the datasets. Feature count was fixed
to n=8 features and n=16 features to address ML
curse of dimensionality issues. Three different
Spearman rank 0.7, 0.8, and 0.9 were considered
for this study.

20 How data were assigned to partitions; spec-
ify proportions

Random subsampling of train (80%) and test
(20%) samples in a 10-fold cross-validation
scheme. See ”Cross-validation scheme” in
manuscript.

21 Level at which partitions are disjoint (e.g.,
image, study, patient, institution)

No same patient data was allowed to be present
in one train-test split across the cross-validation
cods.

Model 22 Detailed description of model, including
inputs, outputs, all intermediate layers and
connections

See ”Methods” in manuscript.

23 Software libraries, frameworks, and
packages

See ”Methods” in manuscript and Supplemental.

24 Initialization of model parameters (e.g.,
randomization, transfer learning)

As of utilized software library default parameters.
See Supplemental for details.

Training 25 Details of training approach, includ-
ing data augmentation, hyperparameters,
number of models trained

Test tata was balanced to properly estimate bal-
anced accuracy (BACC). For hyperparameters
see Supplemental.

26 Method of selecting the final model No final model was selected. Study compared
multiple classic ad quantum ML models to in-
vestigate their feasibilities and capabilities within
the cohort.

27 Ensembling techniques, if applicable NA
Evaluation 28 Metrics of model performance Confusion matrix analytics in test set.

29 Statistical measures of significance and un-
certainty (e.g., confidence intervals)

Confidence intervals (CI) of test predictive per-
formances with 95% confidence levels. Pearson
correlation with p=0.05 significance threshold.
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30 Robustness or sensitivity analysis All confusion metrics including balanced accu-
racy were measured only in test subsets of the
cross-validation scheme. CIs were compared in-
between different ML methods.

31 Methods for explainability or interpretabil-
ity (e.g., saliency maps), and how they
were validated

NA

32 Validation or testing on external data Cross-validation with train-test splits of single-
center cohorts. Only test predictive performance
values were reported.

RESULTS
DATA 33 Flow of participants or cases, using a dia-

gram to indicate inclusion and exclusion
NA

34 Demographic and clinical characteristics of
cases in each partition

NA

Model Performance 35 Performance metrics for optimal model(s)
on all data partitions

Confusion matrix performance metrics in test
subsets.

36 Estimates of diagnostic accuracy and
their precision (such as 95% confidence
intervals)

Average test performance metrics across 10-folds.
95% CI for each performance metric.

37 Failure analysis of incorrectly classified
cases

NA

DISCUSSION
38 Study limitations, including potential bias,

statistical uncertainty, and generalizability
Single-center cohorts. See ”Discussion” in
manuscript for details.

39 Implications for practice, including the in-
tended use and/or clinical role

Quantum ML is feasible to yield high-performing
prediction models in both simulators and real
hardware in collected cohorts.

OTHER
INFORMATION

40 Registration number and name of registry Clinical Trials: NCT02659527
See DOIs: 10.1007/s00259-020-05140-y,
10.2967/jnumed.117.202267,
10.2967/jnumed.117.202267 for details.

41 Where the full study protocol can be
accessed

Clinical Trials: NCT02659527
See DOIs: 10.1007/s00259-020-05140-y,
10.2967/jnumed.117.202267,
10.2967/jnumed.117.202267 for details.

42 Sources of funding and other support; role
of funders

Medical University of Vienna-funded project. L.
Papp is the PI of an in-house grant ”Quantum
Image Analysis”, funding 50k EUR for 1 year.
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