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Methods

Study design

In this retrospective single-centre study with prospective sample collection conducted at the 

Medical University of Vienna (March 2019 - August 2021), 187 men with confirmed PCa 

referred for [ Ga]Ga-PSMA-11 PET/CT underwent PET/CT imaging and blood sample ⁶⁸

collection. An all-comer recruitment strategy was employed. All patients gave their written 

informed consent for imaging, blood sample collection and associated analysis. This study 

was approved by the ethics committee of the Medical University of Vienna (ID: 1649/2016).

For this analysis, patients with histologically proven PCA, known PSA levels and castration 

status were included, while patients with active or a history of concomitant malignancies 

other than PCA (N = 11), unknown PSA values (N = 31) and unknown castration status (N = 

15) were excluded. (Figure 1)

Clinical data, such as PSA levels, castration status and pre-, concurrent and post-imaging 

therapy data, were gleaned retrospectively from the medical records. hsPC was defined as 

PCa, which was not subjected to prior antiandrogens or did not advance in an castration 

environment. CRPC as PCa which progressed despite antiandrogen treatment in a 

castration environment [1].

Follow-up and overall survival (OS) data (censorization 13th August 2023) were sourced 

from Statistic Austria, the national health statistical service. The primary endpoints of this 

study were a) ctDNA and PSMA PET/CT discovery rates according to PSA levels, b) the 

relationship of ctDNA concentrations and the PSMA-TV in all patients and according to their 

respective castration status and c) the prognostic value of ctDNA and PSMA-TV levels with 

regard to overall survival (OS).

Plasma sample collection and storage

Prior to tracer injection, blood samples were collected in Cell-Free DNA BCT tubes (Streck 

Inc., Nebraska, USA). Then, the collected samples were centrifuged twice (1. round: 2000g 

for 20 min., 2. round: 3200 g for 30 min.) to completely remove of any cellular debris. 

Afterwards, the derived plasma was stored at –80 °C till further processing. 
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Imaging protocol

Scans were obtained on a Biograph TruePoint PET/CT scanner (Siemens Healthineers, 

Erlangen, Germany). The patients received an intravenous injection averaging 184.8 MBq (±

19.7 SD) of [ Ga]Ga-PSMA-11. Static whole-body scans were performed from the skull ⁶⁸

base to the upper thigh one hour after the tracer injection. CT scans were acquired first at 

120 kV and 230 mAs with intravenous contrast (CT matrix size 512x512), except 

contraindications for contrast application existed. Afterwards, PET scans were acquired in 3-

4 bed positions with a matrix size of 168x168, followed by iterative reconstruction using a 

point-spread-function-based algorithm.

Image analysis

Two nuclear medicine physicians interpreted the images on a dedicated workstation using 

the Hybrid 3D software (version 4.0.0, Hermes Medical Solutions, Stockholm, Sweden). All 

primary and secondary PSMA-expressing tumour lesions from the skull to the upper femur 

were manually delineated and labelled per their anatomical location (prostate, lymph nodes, 

bone, organ). Lesion identification was performed qualitatively, informed by liver uptake, 

followed by semiautomatic delineation using a region-growing algorithm (Hybrid 3D software,

version 4.0.0). The PSMA-TV, standardized uptake values (SUV) were extracted from an 

aggregated master lesion, comprised of all delineated lesions, as well as per anatomical 

region. The anatomic tumor region which contributed most to the overall PSMA-TV was 

defined as the dominant tumor fraction. 

DNA extraction, quantification 

The cfDNA was extracted from the stored plasma using the QIAamp Circulating Nucleic Acid

Kit (QIAGEN, Venlo, Netherlands) according to the manufacturer's instructions from 4 mL of 

plasma. Subsequently, the extracted cfDNA was stored at -20°C until further analysis.

The cfDNA was quantified on the Fragment Analyzer (Agilent, California, USA) system using

the HS NGS Fragment Kit (Agilent, California, USA), according to the manufacturer's 

instructions. Electropherograms were read and analysed using the PROSize software 

(version 2.0, Agilent, California, USA), enabling the calculation of areas under the curves 

proportional to the DNA concentration of each sample, thereby quantifying the cfDNA and 

proportion of size fractions in the sample. The cfDNA concentrations are expressed as 

nanograms (ng) per microliter (µL) of elution volume.
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DNA sequencing

DNA sequencing libraries were prepared from 19,5 µl of isolated DNA using the xGEN EZ 

UNI Library preparation kit (IDT, Iowa, USA) combined with stubby adaptors (IDT, Iowa, 

USA) containing 3bp random sequence used as UMI. Enzymatic fragmentation time was set 

to 2 minutes. Library PCR amplification was carried out with the xGEN EZ UNI Library 

preparation kit in combination with KAPA UDI primers (Roche, Switzerland). Samples were 

sequenced on NovaSeq 6000 (Illumina, California, USA) in a paired-end 2x60bp setting.

Bioinformatic analysis

We developed an in-house method to analyze the ctDNA fraction in blood samples using 

low-coverage WGS sequencing. Raw sequencing reads were initially mapped to the human 

genomic reference GRCh38 using the BWA tool [2]. After mapping the raw sequencing 

reads to a reference genome, they were counted in 500kb bin intervals. These bin counts 

underwent normalization based on sample size and GC content to address biases and 

variations. From this data, we determined an initial, approximate ctDNA fraction using the 

density plots of the bin sizes. To call CNVs, we employed an algorithm using the normalized 

binned read counts, incorporating a negative binomial distribution for individual bin counts to 

handle overdispersion similar to the ichorCNA methodology [3]. This was followed by using a

dynamic Bayesian network model for holistic CNV predictions. The procedure was iterative, 

with CNVs re-called based on the updated ctDNA fraction and the ctDNA fractions 

recalculated using the new CNV predictions. In cases where no CNVs were discerned, we 

assigned the ctDNA fraction a default value of 0.05 and repeated the CNV calling. We 

measured the quality of our modelled CNVs and ctDNA by examining the residual difference 

between the actual bin sizes and the sizes predicted post-CNV and ctDNA adjustments. To 

test the significance of our predicted ctDNA for each sample, we compared residuals from 

our primary model to those from a noise model created using the same bin count data but 

with randomly permuted bins, employing the Kolmogorov-Smirnov Test for this purpose. Our

final results excluded samples without called CNVs, those with a Kolmogorov-Smirnov Test 

p-value greater than 0.05, and samples predominantly predicting deletions around 

chromosome centromeres — a potential sign of an unidentified technical bias. 

Statistical analysis

Continuous variables are expressed as mean (± standard deviation (SD)), while categorical 

outcomes are expressed as absolute and relative (%) frequencies. 
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The association of the ctDNA and PSMA PET tumor signal discovery rates and PSMA PET 

dominant fraction with castration status, PSA ranges, and disease extent were assessed 

using the Chi-squared and Fisher’s tests, based on the underlying contingency table data 

distribution.

For the comparison of non-normalized and PSMA-TV normalized ctDNA concentrations 

according to PSMA PET disease extent and dominant lesion fraction respectively, normality 

and heteroskedasticity were evaluated using the Shapiro-Wilk and Levene’s test, 

respectively, followed by difference testing using the Kruskal-Wallis test. In case the null 

hypothesis was rejected, post-hoc adjusted pairwise analysis was performed with Dunn-

Bonferoni’s test. 

The normality of ctDNA concentration and PSMA-TV was evaluated with the Shapiro-Wilk 

test. Spearman’s coefficient was used to assess the correlation between ctDNA 

concentrations and PSMA-TV, judging correlations as very strong from 1 to 0.9, strong from 

0.9 to 0.7, moderate from 0.7 to 0.5, low from 0.5 to 0.3 and weak from 0.3 to 0. 

Receiver-operating-characteristic curves were used to assess PSMA-TV's ability to predict 

ctDNA discovery in all and metastatic patients, expressed as area under the curves (AUCs) 

and 95% confidence intervals (CI).

OS probabilities and their pointwise 95% CI from the date of inclusion till death were 

estimated using the Kaplan-Meier method. Survival distributions between high and low 

ctDNA and PSMA-TV groups (cutoff respective median values) as well as between the 

cross-validated machine learning classified groups were compared using the non-parametric

Logrank test. 

To evaluate the relationship between OS and the binary explanatory variables ctDNA 

concentration and PSMA-TV a multivariate Cox regression analysis was performed after 

checking data for multicollinearity and proportional hazards with the Belsley-Kuh-Welsch 

technique and Schoenfeld residuals, respectively.

The alpha risk was set for all statistical analyses to 5% (α = 0.05). All CIs are 95% CI. 

Statistical analysis was performed with the EasyMedStat software (version 3.24, 

EasyMedStat, Paris, France).

Machine learning workflow

To explore potential non-linear relationships between imaging and plasma-derived variables 

and 1-year OS, a 100-fold Monte Carlo (MC) cross-validated machine learning scheme was 

employed. To evaluate the incremental predictive value of combining ctDNA analysis and 

PSMA PET, a compound modelling scheme, incorporating imaging and plasma-derived 

markers, as well as an imaging-only and plasma-only modelling scheme were trained and 
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their performances compared. All features used in the respective ML schemes and their 

associated definitions are summarized in the supplemental Appendix.

In order to enable robust machine learning performance estimations, 100-fold Monte Carlo 

(MC) cross-validation schemes using a 80% to 20% training-to-test set ratio were employed. 

Modelling was strictly conducted on a training data subset. The model performances were 

exclusively evaluated on the test data. 

For each fold, fold-wise preprocessing using feature standardization, k-nearest neighbour 

feature imputation, minimum-redundancy-maximum-relevance-based (mRMR) [4] feature 

selection and class balancing using synthetic minority over-sampling technique (SMOTE) [5] 

was employed. An automated hyperparameter optimization via random search was used. 

Subsequently, six different machine learning (ML) classifiers were trained on the 

preprocessed training data, namely decision trees (DT), logistic regression (LGR), k-nearest 

neighbours (kNN), random forest (RF), extreme gradient boosting (XBG) and explainable 

boosting machine (EBM) [6]. Model prediction performance was estimated via the MC cross-

validation scheme using confusion matrix analytics. True positive, true negative, false 

positive and false negative confusion matrix entries were calculated by evaluating the 

validation samples in each fold. Sensitivity (SNS), specificity (SPC), accuracy (ACC), 

positive predictive values (PPV), negative predictive values (NPV), balanced accuracy 

(BACC) and area under the receiver operating characteristic (AUC) were used as 

performance metrics.

In order to explore the relative importance and the directionality of individual features with 

the predicted outcomes, Shapley additive explanation (SHAP) [7] analysis was employed for 

each model. SHAP analysis was conducted based on a model developed on the entire 

dataset. All analyses were conducted using Python (version 3.9.5) using the following 

packages: Numpy [8], Pandas [9], Seaborn [10], Matplotlib [11], Scikit-learn [12], 

Imbalanced-learn [13], Shap [14], XGBoost [15], InterpretML [6], mRMR1 [4].
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Results

ctDNA and PSMA PET discovery rate differences according to 

castration status

The PSMA PET (odds ratio (OR) = 0.31; 95% CI=[0.13, 0.74]; P = 0.013) and ctDNA 

discovery rates (OR = 0.63; 95% CI=[0.29, 1.34]; P = 0.311) were respectively 67.8% and 

25.42% in the hsPC and 87.32% and 35.21% in CRPC patients, respectively (Figure 1A-B).

Figure 1: ctDNA and PSMA PET discovery rates according to castration status

 

Clinical and demographic table of patients used in 1-year OS 

prediction

A total of 105 patients (age 71.5 ± 7.74 years) were eligible for the 1yOS survival prediction 

based on the available follow-up and outcome data. Their clinical and demographic 

characteristics are presented in Table 1. For input features used in machine learning models

see supplementary Table 6 (Appendix).
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9

Variable

Prediction cohort

N = 105

Age at inclusion [y] 71.5 ± 7.74, Range: (49.0 ; 85.0)

Tracer dose [MBq] 186.25 (± 20.14), Range: (143.0 ; 300.0)

ctDNA detected

yes 31 (29.52%)

no 74 (70.48%)

ctDNA [ng/µL] 0.0897 (± 0.436), Range: (0.0 ; 3.12)

PSA [ng/mL] 112.77 (± 486.32), Range: (0.01 ; 3689.0)

PSMA-TV [cm³] 114.6 (± 318.59), Range: (0.0 ; 1597.67)

PSMA positive lesion

Any lesion 81 (77.14%)

Prostate lesion 31 (29.52%)

Lymph node lesion 43 (40.95%)

Bone Lesion 43 (40.95%)

Organ Lesion 16 (15.24%)

Dominant fraction

Prostate 19 (18.1%)

LN 16 (27.12%)

Bone 34 (32.38%)

Organ 3 (2.86%)

Group

hsPC 47 (44.76%)

CRPC 58 (55.24%)

Systemic therapies while PET

Antihormonal therapies 44 (41.9%)

Cytotoxic therapies 3 (2.86%)

Systemic therapies after PET

Local 26 (40.62%)

Local + ADT 4 (6.25%)

ADT 16 (25.0%)

CHT 1 (1.56%)

CHT + ADT 2 (3.12%)

177Lu-PSMA 13 (20.31%)

Study 2 (3.12%)

Mean Follow-up [m] 23.01 (± 12.25), Range: (0.0 ; 49.0)

1-year OS

yes 85 (80.95%)

no 20 (19.05%)



Table 1. Demographic and clinical patient data of 1yOS survival prediction cohort

Qualitative data as numbers and percentages; Continuous data as mean, standard deviation and range; Local 

disease comprised of prostate and seminal vesicle lesions
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Compound model performances and feature importances

The best-performing compound classifier for the predicted endpoint 1yOS was RF.  

For the individual performances of all compound classifiers see Table 2. For the most 

important features according to SHAP analysis of the best-performing model (RF) see Figure

2. For the Kaplan-Meier curves visualizing the survival probability stratification of the best-

performing imaging-based classifier see Figure 3. 

ACC [± CI] SNS [± CI] SPC [± CI] PPV [± CI] NPV [± CI] BACC [± CI] AUC [± CI]

RF 0.90 [± 0.011] 0.77 [± 0.038] 0.94 [± 0.011] 0.77 [± 0.040] 0.95 [± 0.008] 0.85 [± 0.019] 0.92 [± 0.016]

kNN 0.88 [± 0.012] 0.69 [± 0.044] 0.92 [± 0.013] 0.71 [± 0.042] 0.93 [± 0.009] 0.81 [± 0.022] 0.85 [± 0.023]

XGB 0.90 [± 0.013] 0.75 [± 0.043] 0.93 [± 0.011] 0.74 [± 0.040] 0.94 [± 0.009] 0.84 [± 0.022] 0.91 [± 0.020]

EBM 0.90 [± 0.012] 0.78 [± 0.036] 0.93 [± 0.013] 0.75 [± 0.034] 0.95 [± 0.008] 0.85 [± 0.019] 0.90 [± 0.018]

SVM 0.87 [± 0.015] 0.70 [± 0.047] 0.91 [± 0.017] 0.70 [± 0.043] 0.93 [± 0.010] 0.80 [± 0.023] 0.87 [± 0.023]

LGR 0.86 [± 0.015] 0.75 [± 0.040] 0.88 [± 0.017] 0.64 [± 0.037] 0.94 [± 0.009] 0.81 [± 0.021] 0.90 [± 0.019]

Table 2. Cross-validated machine learning performance metrics of the compound models predicting 1-year 

overall survival. 

Abbreviations: RF - random forest, XGB - extreme gradient boosting, DT - decision tree, LGR - logistic 

regression, kNN - k-nearest neighbour, EBM - explainable boosting machine, ACC - accuracy, SNS - sensitivity, 

SPC - specificity, PPV - positive predictive value, NPV - negative predictive value, BACC - balanced accuracy, 

AUC - area under the receiver-operator curve, CI - confidence interval 
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Figure 2: SHAP analysis plot illustrating the contribution and ranking of the ten most important input features to 

best-performing imaging model

Figure 3. Kaplan-Meier curves representing the survival probabilities of groups stratified by the best-performing 

compound classifier 
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Imaging model performances and feature importances

The best-performing imaging-based classifier for the predicted endpoint 1yOS was RF.  

For the individual performances of all imaging-based classifiers see Table 3. For the most 

important features according to SHAP analysis of the best-performing model (RF) see Figure

4. For the Kaplan-Meier curves visualizing the survival probability stratification of the best-

performing imaging-based classifier see Figure 5. 

ACC [± CI] SNS [± CI] SPC [± CI] PPV [± CI] NPV [± CI] BACC [± CI] AUC [± CI]

RF 0.84 [± 0.013] 0.66 [± 0.047] 0.88 [± 0.017] 0.59 [± 0.040] 0.92 [± 0.01] 0.77 [± 0.022] 0.89 [± 0.014]

kNN 0.81 [± 0.017] 0.65 [± 0.048] 0.84 [± 0.021] 0.53 [± 0.045] 0.91 [± 0.011] 0.74 [± 0.023] 0.82 [± 0.023]

XGB 0.84 [± 0.013] 0.68 [± 0.047] 0.88 [± 0.016] 0.61 [± 0.041] 0.92 [± 0.01] 0.78 [± 0.023] 0.86 [± 0.019]

EBM 0.83 [± 0.016] 0.73 [± 0.042] 0.85 [± 0.020] 0.58 [± 0.037] 0.93 [± 0.01] 0.79 [± 0.021] 0.88 [± 0.014]

SVM 0.85 [± 0.014] 0.59 [± 0.050] 0.91 [± 0.017] 0.65 [± 0.053] 0.91 [± 0.01] 0.75 [± 0.024] 0.80 [± 0.03]

LGR 0.84 [± 0.015] 0.69 [± 0.048] 0.88 [± 0.017] 0.60 [± 0.044] 0.93 [± 0.01] 0.78 [± 0.024] 0.84 [± 0.031]

Table 3. Cross-validated machine learning performance metrics of the imaging-based models predicting 1-year 

overall survival. 

Abbreviations: RF - random forest, XGB - extreme gradient boosting, DT - decision tree, LGR - logistic 

regression, kNN - k-nearest neighbour, EBM - explainable boosting machine, ACC - accuracy, SNS - sensitivity, 

SPC - specificity, PPV - positive predictive value, NPV - negative predictive value, BACC - balanced accuracy, 

AUC - area under the receiver-operator curve, CI - confidence interval 

Figure 4: SHAP analysis plot illustrating the contribution and ranking of the ten most important input features to 

best-performing imaging model
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Figure 5. Kaplan-Meier curves representing the survival probabilities of groups stratified by the best-performing 

imaging-based classifier 
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Plasma model performance and feature importance

The best-performing plasma-based classifier for the predicted endpoint 1yOS was XGB.  

For the individual performances of all plasma-based classifiers see Table 4. For the most 

important features according to SHAP analysis of the best-performing model (XGB) see 

Figure 6. For the Kaplan-Meier curves visualizing the survival probability stratification of the 

best-performing plasma-based classifier see Figure 7. 

ACC [± CI] SNS [± CI] SPC [± CI] PPV [± CI] NPV [± CI] BACC [± CI] AUC [± CI]

RF 0.87 [± 0.012] 0.71 [± 0.043] 0.91 [± 0.012] 0.68 [± 0.039] 0.93 [± 0.009] 0.81 [± 0.022] 0.90 [± 0.016]

kNN 0.83 [± 0.015] 0.58 [± 0.048] 0.88 [± 0.016] 0.57 [± 0.049] 0.90 [± 0.01] 0.73 [± 0.025] 0.84 [± 0.022]

XGB 0.88 [± 0.013] 0.73 [± 0.046] 0.91 [± 0.014] 0.69 [± 0.043] 0.94 [± 0.01] 0.82 [± 0.023] 0.93 [± 0.014]

EBM 0.91 [± 0.01] 0.81 [± 0.035] 0.94 [± 0.01] 0.78 [± 0.032] 0.96 [± 0.01] 0.87 [± 0.018] 0.93 [± 0.012]

SVM 0.82 [± 0.013] 0.69 [± 0.046] 0.85 [± 0.015] 0.53 [± 0.033] 0.93 [± 0.011] 0.77 [± 0.022] 0.89 [± 0.018]

LGR 0.83 [± 0.014] 0.69 [± 0.047] 0.87 [± 0.016] 0.57 [± 0.037] 0.92 [± 0.011] 0.78 [± 0.023] 0.91 [± 0.015]

Table 4. Cross-validated machine learning performance metrics of the plasma-based models predicting 1-year 

overall survival. 

Abbreviations: RF - random forest, XGB - extreme gradient boosting, DT - decision tree, LGR - logistic 

regression, kNN - k-nearest neighbour, EBM - explainable boosting machine, ACC - accuracy, SNS - sensitivity, 

SPC - specificity, PPV - positive predictive value, NPV - negative predictive value, BACC - balanced accuracy, 

AUC - area under the receiver-operator curve, CI - confidence interval 

Figure 6: SHAP analysis plot illustrating the contribution and ranking of the ten most important input features to 

best-performing plasma model
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Figure 7. Kaplan-Meier curves representing the survival probabilities of groups stratified by the best-performing 

plasma-based classifier 
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Comparative overview of best-performing machine learning 

classifiers

ACC [± CI] SNS [± CI] SPC [± CI] PPV [± CI] NPV [± CI] BACC [± CI] AUC [± CI]

Mcompound 0.90 [± 0.011] 0.77 [± 0.038] 0.94 [± 0.011] 0.77 [± 0.040] 0.95 [± 0.008] 0.85 [± 0.019] 0.92 [± 0.016]

Mimaging 0.88 [± 0.012] 0.69 [± 0.044] 0.92 [± 0.013] 0.71 [± 0.042] 0.93 [± 0.009] 0.81 [± 0.022] 0.85 [± 0.023]

Mplasma 0.90 [± 0.013] 0.75 [± 0.043] 0.93 [± 0.011] 0.74 [± 0.040] 0.94 [± 0.009] 0.84 [± 0.022] 0.91 [± 0.020]

Table 5. Cross-validated machine learning performance metrics of the best-performing models trained on 

imaging- and plasma-derived (Mcompound), imaging- (Mimaging) and plasma-derived features (Mplasma) 

predicting 1-year overall survival 

Abbreviations: ACC - accuracy, SNS - sensitivity, SPC - specificity, PPV - positive predictive value, NPV - 

negative predictive value, BACC - balanced accuracy, AUC - area under the receiver-operator curve, CI - 

confidence interval 
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Appendix

Feature Definition

Compound 

model

Imaging 

model

Plasma 

model

cfDNA [ng/µL] cell-free DNA concentration x x

cfDNA concentration 

Binary [Median] median stratified binary low and high cfDNA groups x x

ctDNA [ng/µL] circulating-tumor DNA concentration x x

ctDNA concentration 

Binary [Median] median stratified binary low and high ctDNA groups x x

Tumor fraction predicted 

[%] percentage of predicted ctDNA fraction in cfDNA x x

ctDNA detected binary ctDNA detected x x

Dmax [mm] maximum distance of metastasis x x

Sdmax [1/m] standardized maximum metastasis distance x x

Disease extent

disease extent based on PSMA PET with the 

categories “no lesions”, “localized disease” 

comprised of prostate and seminal vesicle lesions 

and “metastatic” x x

Prostate Lesion positive binary any prostate lesion x x

Lymphnode Lesion 

positive binary any lymph node lesion x x

Bone Lesion positive binary any bone lesion x x

Organ Lesion positive binary any organ lesion x x

Any Lesion positive binary any lesion x x

Prostate PSMA-TV [cm³] PSMA-TV of prostate lesions aggregated x x

Prostate SUVmin SUVmin of prostate lesions aggregated x x

Prostate SUVmax SUVmax of prostate lesions aggregated x x

Prostate SUVmean SUVmean of prostate lesions aggregated x x

Prostate SUVpeak SUVpeak of prostate lesions aggregated x x

Prostate TL-PSMA

Total lesion PSMA-TV of prostate lesions 

aggregated x x

Lymph node PSMA-TV 

[cm³] PSMA-TV of lymph node lesions aggregated x x

Lymph node SUVmin SUVmin of lymph node lesions aggregated x x
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Lymph node SUVmax SUVmax of lymph node lesions aggregated x x

Lymph node SUVmean SUVmean of lymph node lesions aggregated x x

Lymph node SUVpeak SUVpeak of lymph node lesions aggregated x x

Lymph node TL-PSMA

Total lesion PSMA-TV of lymph node lesions 

aggregated x x

Bone PSMA-TV [cm³] PSMA-TV of bone lesions aggregated x x

Bone SUVmin SUVmin of bone lesions aggregated x x

Bone SUVmax SUVmax of bone lesions aggregated x x

Bone SUVmean SUVmean of bone lesions aggregated x x

Bone SUVpeak SUVpeak of bone lesions aggregated x x

Bone TL-PSMA Total lesion PSMA-TV of bone lesions aggregated x x

Organ PSMA-TV [cm³] PSMA-TV of organ lesions aggregated x x

Organ SUVmin SUVmin of organ lesions aggregated x x

Organ SUVmax SUVmax of organ lesions aggregated x x

Organ SUVmean SUVmean of organ lesions aggregated x x

Organ SUVpeak SUVpeak of organ lesions aggregated x x

Organ TL-PSMA Total lesion PSMA-TV of organ lesions aggregated x x

PSMA-TV [cm³] PSMA-TV of all lesions aggregated x x

PSMA-TV Binary 

[Median] median stratified binary PSMA-TV of all lesions x x

Master SUVmin SUVmin of all lesions aggregated x x

Master SUVmax SUVmax of all lesions aggregated x x

Master SUVmean SUVmean of all lesions aggregated x x

Master SUVpeak SUVpeak of all lesions aggregated x x

Master TL-PSMA Total lesion PSMA-TV of all lesions aggregated x x

PSMA-TV local fraction 

[%]

percentage of total PSMA-TV contributed by 

prostate lesions x x

PSMA-TV lymph node 

fraction [%]

percentage of total PSMA-TV contributed by lymph 

node lesions x x

PSMA-TV bone fraction 

[%]

percentage of total PSMA-TV contributed by bone 

lesions x x

PSMA-TV organ fraction 

[%]

percentage of total PSMA-TV contributed by organ 

lesions x x

Dominant fraction lesion fraction contributing most to total PSMA-TV x x

Total lesion [n] total number of lesions x x

Total prostate or seminal 

vesicle lesion [n]

total number of lesions in prostate or seminal 

vesicles x x
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Prostate [n] total number of prostate lesions x x

Pelvic lymph nodes [n] total number of pelvic lymph node lesions x x

Retroperitoneal lymph 

node [n] total number of retroperitoneal lymph node lesions x x

Distant lymph node [n] total number of distant lymph node lesions x x

Bone [n] total number of bone lesions x x

Total organ [n] total number of organ lesions x x

PSA [ng/mL] plasma prostate-specific antigen level x x

Table 6. Input features used in the compound, imaging and plasma-based models
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