SUPPLEMENTARY TABLE 1

Cancer incidence and/or mortality in human populations (patients, workers, and residents) chronically exposed to low-level ionizing radiation.

Population	Results of analyses	Reference
Female radium dial	Bone sarcomas and carcinomas of the	[30]
painters (workers)	mastoid and paranasal sinuses diagnosed only	
	in painters who had radiation doses to bone of	
	at least 10 Gy	
Residents of high	No excess or decreased cancer mortality or	[31-38]
natural radiation areas	incidence rates compared to residents of low	
in Brasil, China, India,	background radiation areas in these countries;	
Iran, Japan, Poland	in some studies a lower rate of cancer	
	mortality correlated with enhanced reactivity	
	of peripheral blood lymphocytes	
Residents of dwellings	Inverse correlation between the concentration	[40-43]
with elevated levels of	of radon in homes and lung cancer incidence	
radioactive radon and	and mortality among the residents	
its progeny –		
ecological studies		
Female <i>patients</i> with	Breast cancer incidence in patients with	[44]
tuberculosis exposed to	radiation doses 0.05-0.3 Gy to the chest: 1/3	
multiple fluoroscopies	of background incidence	
>7,800 residents of	Cancer incidence rates in groups of residents	[45]
villages in the East	with effective doses up to 0.12 and 0.5 Sv	
Urals exposed to	39% and 29% lower, respectively, than the	
radioactive waste from	expected baseline level in the area	
the 'Mayak' nuclear		
reprocessing facility		
American radiologic	SMR for deaths from all cancers among	[46-48]
technologists (73%	radiological workers: 0.79-0.82 (American)	
females) registered	and 0.71 (British)	
1926-1980 and British		

		1 1
male radiologists		
registered 1955-1979		
>14,000 <i>workers</i> at	Cancer mortality rate 5% lower than that of	[49]
Sellafield plant of	general population of England and Wales,	
British Nuclear Fuels	and 3% lower than that of the general	
in Cumbria, England,	population of Cumbria	
exposed 1947-1975 to		
internalized plutonium		
and external low-LET		
radiation		
12,540 workers at the	SMRs for all cancers = 88% and 97%, for	[50]
Capenhurst site of	radiation and non-radiation workers,	
British Nuclear Fuels	respectively, and SIRs for all cancers $= 82\%$	
and its predecessors	and 88%, for radiation and non-radiation	
between 1946 and	workers, respectively	
1995		
Residents of the	RRs of cancer death before start-up of the	[51]
Apollo borough and	nuclear facilities (1950-1964), during the	
the Parks township (in	operations (1965-1980), and after plant	
Armstrong and	closure (1980-1995) = 0.96, 0.95, and 0.98,	
Westmoreland	respectively. RR of death from childhood	
Counties, U.S.A)	leukemia = 1.02 before plant start-up, 0.81	
where uranium and	during the operations, and 0.57 after closure.	
plutonium processing		
facilities operated from		
1965 to 1980		
>51,000 <i>workers</i> of the	All cancer mortality rates among radiation-	[52]
UK Atomic Energy	exposed workers significantly lower	
Authority	compared to non-radiation workers	
>38,000 nuclear	Significantly reduced mortality rates due to	[53]
shipyard workers	cancer (SMR = 0.85), cardiovascular	
exposed to radiation	diseases, and respiratory diseases compared	
	to the rates recorded in unexposed control	
	1	

	workers	
Residents of counties	Overall cancer mortality rates slightly below	[54]
near the Hanford	those in similar counties in Washington State	
nuclear facility in	with minimal I-131 exposure; no excess	
Richland, WA, U.S.A.,	mortality from thyroid cancer, female breast	
releasing I-131 into the	cancer, and leukaemia (including childhood	
environment from	leukaemia)	
1944 to 1957		
>7,200 residents of	Significantly lower cancer incidence (SIR)	[55]
buildings in Taipei,	for all cancers except leukaemia and for solid	
Taiwan, chronically	cancers (at 95% CI) and significantly lower	
exposed to γ-radiation	SIR for all cancers (at 90% CI) compared to	
from the Co-60-	general population of Taipei	
contaminated steel		
used for construction		
Residents of Montrose	In males: no excess mortality from cancers of	[56]
County, USA, living	the breast, kidney, liver, bone, leukemia, non-	
near uranium mining	Hodgkin lymphoma or childhood cancer;	
and milling facilities	in females: decreased lung cancer mortality	
	(RR= 0.85; 95% CI 0.67, 1.02) compared to	
	non-exposed inhabitants of the county	
Meta-analysis of	Decreased risk of all cancers including	[57,58]
>400,000 nuclear	leukemia compared to that recorded for non-	
workers from 15	exposed workers	
countries		
Residents of homes in	AORs for lung cancer risk among residents of	[59,60]
Worcester county,	homes where average radon level was 50, 75,	
Massachusetts, with	and 150 Bq/m ³ were 0.53, 0.31 (p<0.05), and	
elevated radon levels –	0.47, respectively, compared to residents of	
a case-control study	homes with radon levels $\leq 25 \text{ Bq/m}^3$	
<i>Residents</i> of the most	No increased rates of leukemias or solid	[61-64]
contaminated areas of	tumors; elevated incidence of thyroid cancers	
Belarus and Russia and	only in children under 18 years of age in 1986	

clean-up workers after	who absorbed doses to the thyroid >0.1 Gy	
the Chernobyl accident	from incorporated I-131	
Childhood cancer	Reduced incidence of second cancers per kg	[65]
patients treated with	of tissue in regions of the body that had	
radiation therapy	received radiation dose <0.2 Gy in	
	comparison to non-irradiated regions	
Hyperthyroid patients	In patients whose total body dose was 0.13-	[27]
treated with I-131	0.14 Sv the age-adjusted leukemia incidence	
	was 11/100,000 patient-years vs. 14/100,000	
	patient-years in patients treated by surgery	
	only	
Residents of high	Lung cancer incidence in men and women	[66]
impact states of USA	from high-impact states significantly lower	
where fallout from	than that in residents of normal impact states	
nuclear testing		
occurred		
34,912 US male	In the radiologists graduated after 1940: a)	[223]
radiologists compared	decreased RR of deaths from all malignant	
to 47,497 US male	neoplasms and those of the CNS; b)	
psychiatrists (both	insignificantly increased RR of deaths from	
groups graduated from	total leukemia (but not in those graduated in	
medical school in	1960-1979); c) insignificantly increased RR	
1916-2006)	of deaths from cancer of the respiratory	
	organs (but not in those graduated in 1980-	
	2006)	
(i) 194,042 cases of	(i) the small dose of scattered ovarian	[224]
breast cancer treated	radiation (about 0.03 Gy) from beam	
with beam radiation vs.	radiation to the breast reduced the risk of	
283,875 cases of breast	ovarian cancer by 24% (ii) the beam radiation	
cancer not treated with	to the rectum that also reached the ovaries	
radiation; (ii)13,099	reduced the risk of ovarian cancer by 44%	
cases of rectosigmoid	(iii) a significant inverse relationship detected	
cancer treated with	between the incidence of ovarian cancer in	
l		

beam radiation vs.	white women and radon background radiation	
33,305 cases of	and total background radiation.	
rectosigmoid cancer		
not treated with		
radiation		

Legend: 95%/90% CI – confidence interval: the range of values in which 95/90% of the true means fall; AOR – adjusted odds ratio: the odds of exposure in the diseased group (cases) divided by the odds of exposure in the non-diseased group (controls); RR – relative risk (a.k.a. risk ratio): the ratio of the risk in the exposed group to the risk in the unexposed group; SIR - standardized incidence ratio: incidence in the studied cohort vs. incidence in the general population; SMR – standardized mortality ratio: mortality in the studied cohort vs. mortality in the general population; Sv – Sievert, an SI derived unit (1 Sv = 1 J/kg) of the equivalent and effective doses of ionizing radiation, for X- and gamma radiation 1 Sv roughly equals to 1 Gy.

SUPPLEMENTARY TABLE 2

Anti-neoplastic effects of LLR demonstrated in experimental systems.

Experimental	Irradiation	Effect	Refere
system			nce
Swiss mice	Five or ten WBI at 0.01	Significant suppression of the	[67]
	Gy γ-rays 24 h prior to	development of thymic lymphoma	
	the challenge dose of 2 or	compared to animals exposed to the	
	3 Gy	challenge dose only	
Quiescent mouse	Single irradiation with γ-	Three- to fourfold reduction of the	[225]
embryo C3H 10	rays at doses from 0.001	risk of spontaneous neoplastic	
T1/2 cells	to 0.1 Gy	transformation after exposures at	
		0.001 up to 0.1 Gy; the protective	
		effect seen only in irradiated cells	
		allowed to incubate at 37oC before	
		release from contact inhibition.	
WKHA rats	WBI at 0.2 Gy γ-rays	Significant suppression of	[68,69]
implanted into	after implantation of the	metastases to the lungs and	
the right leg with	hepatoma cells	abdominal lymph nodes	
KDH-8 hepatoma			
cells			
CBA/H mice in	Chronic irradiation at 0.1	Significant increase in the latent	[70]
which acute	Gy γ-rays 24 h prior to	period for the development of AML	
myeloid	the chronic irradiation at		
leukaemia	1.0 Gy		
(AML) was			
induced by			
chronic γ-ray			
irradiation to total			
dose of 1.0 Gy			
Cancer-prone	Single exposures to γ-	Significantly increased latency of	[71]
Trp53 ^{+/-} mice with	rays at 0.01 or 0.1 Gy,	lymphomas and spinal	
reduced p53	0.5 mGy/min. dose rate	osteosarcomas after exposure at	

function		0.01 Gy and significantly increased	
		latency of lymphomas after	
		exposure at 0.1 Gy	
HeLa x skin	In vitro exposure to a	At doses <0.01 Gy neoplastic	[72]
fibroblast hybrid	range of doses of	transformation frequencies	
cells	diagnostic energy (60	significantly less than those seen in	
	kVp) X-rays	non-irradiated cells	
Kunming mice	WBI with X-rays at	Significantly retarded tumor growth	[73,74]
(similar to	0.075 Gy 6 h before	in the irradiated compared to non-	
C57BL/6 mice)	sarcoma implantation	irradiated control mice	
implanted into			
the right inguen			
with S180			
sarcoma cells			
C57BL/6 mice	Four acute WBI with X-	No thymic lymphomas in mice	[75]
	rays at 1.8 Gy each (7.2	continuously exposed to X-rays vs.	
	Gy total dose) or	90% of mice with lymphomas after	
	continuous irradiation for	four exposures at 1.8 Gy	
	258 or 450 days at 1.2		
	mGy/h (7.2 and 12.6 Gy		
	total dose, respectively)		
AKR mice	WBI at 0.05 Gy three	Lymphoma incidence: 80.5% in	[76]
	times a week or at 0.15	sham-irradiated mice, 67.5% in	
	Gy two times a week	mice irradiated with 0.05 Gy, and	
	from 11 weeks of age for	48.6% in mice irradiated with 0.15	
	40 weeks.	Gy; mean survival time	
		significantly prolonged in all the	
		irradiated mice.	
Immature	Exposure to X- rays at	Compared to the sham-irradiated	[226]
spermatocytes	high (10 Gy) or low (0.2	sperm cells significantly lower	
and	Gy) total dose delivered	mutation frequency in the low	
spermatogonia of	at 0.05 Gy/min. dose rate	does-exposed sperm cells and	
fruit fly		significantly increased mutation	

Drosophila		frequency in the high dose-exposed	
melanogaster		sperm cells	
C57BL/6 mice	Conventional local RT	Significant inhibition of the	[77,78]
implanted with	with X-rays (each	transplanted tumor growth and	
Lewis lung	exposure at 2 Gy)	reduction of pulmonary metastases	
carcinoma (LLC)	interrupted with WBI at	in mice given combined RT and	
or melanoma	0.075 or 0.1 Gy (LLR)	LLR treatment compared to those	
(B16) cells		receiving local RT alone	
Immature male	Irradiation with γ-rays at	Significantly decreased mutation	[79]
germ cells of fruit	22.4 mGy/h to a total	frequency in the irradiated germ	
fly Drosophila	dose of 0.5 mGy	cells compared to the control,	
melanogaster		unexposed germ cells	
Young beagle	Inhalation of plutonium	Incidence of lung tumors	[80]
dogs	oxide (²³⁸ PuO ₂ , ²³⁹ PuO ₂)	significantly greater in control (zero	
	aerosols leading to	dose) group than in the group with	
	absorbed lung doses from	the lowest lung doses (0.08-0.22	
	0.08 to >77 Gy	Gy); no lung tumors in 16 dogs	
		from the latter group	
BALB/c mice i.v.	Single WBI with X-rays	Significant inhibition of the	[81-88]
injected with L1	at 0.1 or 0.2 Gy 2h	development of sarcoma colonies in	
sarcoma cells	before injection of the	the lungs	
	sarcoma cells		
BALB/c and	WBI with ten fractions of	Markedly inhibited development of	[88-90]
C57BL/6 mice	X-rays at 0.01, 0.02, or	pulmonary tumor colonies	
i.v. injected with	0.1 Gy each before tumor		
L1 sarcoma and	cells injection		
LLC cells,			
respectively			
A/J mice i.p.	0.6 Gy of γ-rays	Significant inhibition of the	[91]
injected with	delivered in 6 bi-weekly	development of lung adenomas in	
benzo(a)pyrene	fractions of 0.1 Gy	the irradiated compared to non-	
	starting one month after	irradiated mice	
	the injection of		

benzo(a)pyrene		
----------------	--	--

SUPPLEMENTARY TABLE 3

LLR-induced modulation of immune functions in experimental systems

Experimental	Irradiation	Effect	Reference
system			
Wild-type	WBI with low-	Increased proliferation of splenic T	[227,228]
C57BL/6 and	LET radiation at	cells in both strains exposed at 0.01,	
autoimmune-	0.01, 0.04 or 0.1	0.04 Gy/day dose rates, decreased	
prone C57BL/6	Gy/ day for 20	proliferation of splenocytes from	
lpr/lpr mice	days	normal mice exposed at 0.1 Gy/day;	
		shifts in proportions of T cells in the	
		thymus and the spleen	
C57BL/6 mice	WBI with γ-rays	Increased production of IL-1 β and	[229]
	at 0.04 Gy	IFN- γ in the supernatants of co-	
		cultures of splenic lymphocytes and	
		peritoneal macrophages when the	
		latter cells were obtained from the	
		irradiated mice; enhanced production	
		of IL-1 β by the IFN- γ -treated	
		macrophages obtained from the	
		irradiated mice.	
C57BL/6 and	WBI with γ-rays	Significantly stimulated proliferation	[230]
BALB/c mice	at 0.04 Gy/day	of splenic CD8 ⁺ T cells in response to	
	for 5 days	ConA in C57BL/6 mice; suppression	
		of the same response in BALB/c mice	
Kunming mice	Single WBI with	Up-regulation of CD28 and down-	[98,198]
(similar to	X-rays at 0.075	regulation of CTLA-4 on splenic T	
C57BL/6 mice)	Gy (low-level	cells along with suppressed production	
	radiation, LLR)	of IL-10 (immunoenhancement) after	
	or 2.0 Gy (high-	LLR exposure; opposite effects	
	level radiation,	(immunosuppression) after HLR	
	HLR)	exposure	
Kunming mice	WBI with X-	Exposure to both low (0.05-0.075 Gy)	[215]

Gy secretion by peritoneal macrophages	
of IL-12 and IL-18 accompanied by	
up-regulated expression of CD14 and	
TLR4-MD2 on the surface and of	
MyD88 in the cytoplasm of	
macrophages (activation of the Toll	
signalling pathway)	
BALB/c and Single WBI with Significantly enhanced cytotoxic	[81-90,
C57BL/6 mice X-rays at 0.1 or activities of splenic NK cells and	176-179]
0.2 Gy or ten peritoneal macrophages and up-	
whole-body regulated secretion of NO, IL-1 β ,	
irradiations at TNF-α, and IL-12 by macrophages	
0.01, 0.02, or and perform, FasL, IL-2, and IFN- γ by	
0.1 Gy each splenocytes	
Co-culture of Irradiation of Stimulation by the irradiated J774A.1	[231]
antigen- J774A.1 cells cells of proliferation of nonirradiated	
presenting cells with X-rays at T lymphocytes	
(J774A.1) with T 0.075 Gy (12.5	
lymphocytes mGy/min. dose	
(EL-4) rate)	
Wild-type mouse Chronic WBI Significant increase in CD4 ⁺ and	[232]
strains (C57BL/6, with γ -rays at CD8 ⁺ T cells, significant decrease in	
BALB/c, 1.2 mGy/h dose CD40 ⁺ B cells, no CD3 ⁻ CD4 ⁺	
C3H/He, DBA/1, rate ("abnormal" immune cells) T cells in	
DBA/2, CBA) bone marrow, thymus, spleen, lymph	
nodes and/or peripheral blood	
MRL-lpr/lprChronic WBISignificant prolongation of life span	[233]
mice with with γ -rays at along with significant increase in	
multiple diseases $0.35 \text{ or } 1.2$ $CD4^+CD8^+$ cells in the thymus and	
and shortened life mGy/h dose rate $CD8^+$ T cells in the spleen; significant	
span decrease in CD3 ⁺ CD45R/B220 ⁺ and	
$CD45R/B220^+CD40^+$ cells in the	

		spleen	
C57BL/6 mice	Continuous	Increased numbers of splenic CD4 ⁺ T	[75]
immunized with	WBI with X-	cells, $CD40^+$ B cells, and antibody-	
sheep red blood	rays at 1.2-	producing cells	
cells	mGy/h dose-rate		
	till the end of		
	life		
C57BL/6 mice	WBI with 0.04	Enhanced NO secretion and	[234]
	Gy γ-rays at 3.1	phagocytosis by isolated peritoneal	
	mGy/min. dose	macrophages; in isolated splenic	
	rate for 5 days at	CD8+ T cells: (i) increased expression	
	24 h intervals	of CD69 antigen, (ii) enhanced	
	(0.2 Gy total	proliferation in response to Con A,	
	dose)	(iii) augmented mixed-leukocyte	
		reaction and killing of target cells, (iv)	
		suppressed secretion of IFN- γ	
BALB/c and	WBI with X-	Increased numbers of plasma cells in	[235]
C57BL/6J mice	rays at 0.25 Gy	spleens of the mice from both strains	
Female C57BL/6	WBI with X-	28 days post-exposure: increased	[236]
mice	rays at 0.2 Gy	numbers and functions of NK, T, and	
	four times every	NKT lymphocytes in the liver, spleen	
	other day for	and thymus	
	seven days		
SJL/J female	Continuous	Slightly prolonged life span along with	[174]
mice	WBI with γ-rays	increased percentage of CD49 ⁺ NK	
(spontaneously	at 100 mGy/y	cells in the spleen and decreased	
develop B-cell	dose rate	percentages of $CD4^+$ and $CD8^+$ T cells	
lymphoma)		in the lymph nodes and spleen	
Murine dendritic	In vitro	DCs exposed to 0.05 Gy most	[237]
cells (DCs) co-	exposure to γ-	vigorously stimulated proliferation of	
cultured with	rays at 0.02-1.0	allogenic T cells, accompanied by	
allogenic T cells	Gy	increased production by DCs of IL-2,	
		IL-12, and IFN-γ	
	L		

C57BL/6 mice	WBI with	Up-regulation of five to nine genes	[238]
	proton radiation	relevant to helper function of splenic	
	(as it occurs in	CD4 ⁺ T cells; no down-regulation of	
	the spaceflight	any of the 84 tested genes	
	environment) at		
	total doses 0.01		
	or 0.1 Gy		
C57BL/6 mice	WBI with γ-rays	In isolated splenocytes: (i) decreased	[239]
	at total doses	apoptosis of CD4 ⁺ T cells, Treg cells,	
	0.01, 0.05, 0.1,	$CD8^+$ cells, NK cells, DCs, and B	
	and 0.5 Gy	cells; (ii) decreased expression of Th1-	
		type cytokines (IL-2, IL-12, IFN-γ,	
		LT- β and/or TNF- α) and Th2-type	
		cytokines (IL-4, IL-6, IL-10); (iii)	
		increased level of IL-5	
Peripheral blood	In vitro	Significant increase in cytotoxic	[240]
lymphocytes	irradiation with	activity of PBLs and their mRNA	
(PBLs) from	high-LET ¹² C	expression of IL-2, IFN- γ , and TNF- α ;	
healthy humans	ions or low-LET	the effects more pronounced after	
	X-rays at 0.05	exposure to 12 C ions	
	Gy		
Peripheral blood	As above	(i) Increased percentages of	[203-204]
lymphocytes		CD3 ⁺ CD4 ⁺ and CD3 ⁺ CD8 ⁺ T cells, (ii)	
(PBLs) from		increased expression of mRNAs for	
patients with		and secretion of IFN- γ and IL-2 by	
alimentary tract		PBLs; the effects more pronounced	
and pancreatic		after exposure to ¹² C ions	
cancer			
C57BL/6 mice	WBI with γ-rays	Increased production by splenic CD4 ⁺	[241]
	at 0.179 mGy/h	T cells of IL-2 and IL-4 and decreased	
	to a total dose of	production of TGF- β 1 in the LLR +	
	0.01 Gy (LLR)	sSPE group compared to the sSPE	
	with or without	only group	
	1		

	subsequent		
	exposure to		
	simulated solar		
	particle event		
	(sSPE) protons		
	at 1.7 Gy		
BALB/c mice	WBI with γ-rays	(i) Stimulated differentiation of bone	[242]
	at total dose of	marrow cells into DCs expressing	
	0.2 Gy (15.44	CD80 and CD86 and MHC class I and	
	mGy/h dose-	II molecules (on immature and mature	
	rate)	DCs), (ii) increased serum levels of G-	
		CSF and IL-10.	
C57BL/6 mice	WBI with X-	Significant reduction of diabetes-	[170]
developing	rays at 0.025 Gy	induced cardiac inflammation	
streptozotocin-	once every 2	accompanied by down-regulation of	
induced diabetes	days for 2, 4, 8,	cardiac levels of IL-18, TNF-α, MCP-	
	12 and 16 weeks	1, and PAI-1	
C57BL/6 mice	WBI with X-	Significant attenuation of	[95]
developing	rays at 0.05 or	inflammation and oxidative stress in	
streptozotocin-	0.075 Gy for 4	the diabetic kidneys	
induced diabetes	weeks with		
	high-fat diet		
	treatment		
Rat basophilic	In vitro	(i) suppressed release of histamine, β-	[243]
leukemia cells	exposure to γ-	hexosaminidase, IL-4, and TNF- α	
(RBL-2H3), a	rays at 0.01 Gy	from IgE-sensitized RBL-2H3 cells,	
model system for		(ii) inhibition of phosphorylation of	
studying mast		signaling molecules following	
cells		stimulation of the high-affinity IgE	
		receptor FccRI	
Purified NK cells	In vitro	Significant stimulation of cytotoxic	[196]
from spleens of	exposure to γ -	function of NK cells against the MHC	
C57BL/6 mice	rays at 4.2	class I-negative RMA/S target cells	
	-		

	mGy/h to a total		
	dose of 0.2 Gy		
Isolated human	In vitro	Activation of pro-survival and pro-	[244]
primary	irradiation with	inflammatory responses: up-regulation	
monocytes	X rays at 0.05	of TLR signaling molecules (HMGB1,	
	and 0.1 Gy	TLR4, TLR9, MyD88 and IRAK1),	
		and the NF-KB and MAPK pathways	
C57BL/6 mice	WBI with γ-rays	(i) High percentage of CD4 ⁺ CD25 ⁺	[245]
	at 30 mGy/h to a	Foxp3 ⁺ Treg cells in spleens from P	
	total dose of	vs. P + LLR and LLR + P groups vs.	
	0.01 Gy (LLR)	control (0 Gy) group; (ii) in spleen	
	with or without	supernatants: high IL-2 level in LLR	
	2 Gy proton (P;	and LLR + P groups vs. 0 Gy group;	
	1 Gy/min.) or γ-	high IL-10 level in LLR + γ groups vs.	
	ray (γ; 0.9 Gy/	0 Gy group; (iii) low TGF-β1 level in	
	min.) irradiation	the blood from LLR + P vs. LLR + γ	
		groups; (iv) activated cJun N-terminal	
		kinase (JNK) in CD4 ⁺ T cells from	
		LLR + P vs. LLR + γ group	
NK cells isolated	In vitro	Expansion and stimulation of the	[197]
from peripheral	irradiation with	cytotoxic activity of NK cells	
blood of healthy	X-rays at 12.5	accompanied by significantly	
human donors	mGy/min to a	increased levels of IFN- γ and TNF- α	
	total dose of	in supernatants of cultured NK cells	
	0.075 Gy		

Additional, supplementary references:

- 223. Berrington de González A, Ntowe E, Kitahara CM, Gilbert E, Miller DL, Kleinerman RA et al (2016) Long-term mortality in 43 763 U.S. radiologists compared with 64 990 U.S. psychiatrists. Radiology 281:847-857. doi: 10.1148/radiol.2016152472
- 224. Lehrer S, Green S, Rosenzweig KE (2016) Reduced ovarian cancer incidence in women exposed to low dose ionizing background radiation or radiation to the ovaries after treatment for breast cancer or rectosigmoid cancer. Asian Pac J Cancer Prev 17:2597-2600. doi:10.7314/APJCP.2016.17.6.2597
- 225. Azzam EI, de Toledo SM, Raaphorst GP, Mitchel RE (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146:369-373. doi: 10.2307/3579298
- 226. Koana T, Okada MO, Ogura K, Tsujimura H, Sakai K (2007) Reduction of background mutations by low-dose X irradiation of Drosophila spermatocytes at a low dose rate. Radiat Res 167:217-221. doi: 10.1667/RR0705.1
- 227. James SJ, Makinodan T (1988) T cell potentiation in normal and autoimmune-prone mice after extended exposure to low doses of ionizing radiation and/or caloric restriction. Int J Radiat Biol Relat Stud Phys Chem Med 53:137-152. doi: 10.1080/09553008814550491
- 228. James SJ, Enger SM, Peterson WJ, Makinodan T (1990) Immune potentiation after fractionated exposure to very low doses of ionizing radiation and/or caloric restriction in autoimmune-prone and normal C57Bl/6 mice. Clin Immunol Immunopathol 55:427-437. doi: 10.1016/0090-1229(90)90129-E
- 229. Ibuki Y, Goto R (1999) Contribution of inflammatory cytokine release to activation of resident peritoneal macrophages after in vivo low-dose gamma-irradiation. J Radiat Res 40:253-62. doi: 10.1269/jrr.40.253
- 230. Shankar B, Premachandran S, Bharambe SD, Sundaresan P, Sainis KB (1999) Modification of immune response by low dose ionizing radiation: role of apoptosis. Immunol Lett 68:237-245. doi: 10.1016/S0165-2478(99)00074-7
- 231. Liu SZ, Jin SZ, Liu XD (2004) Radiation-induced bystander effect in immune response.Biomed Environ Sci 17:40-46
- 232. Ina Y, Sakai K (2005) Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int J Radiat Biol 81:721-729. doi: 10.1080/09553000500519808

- 233. Ina Y, Sakai K (2005) Further study of prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of whole-life irradiation. Radiat Res 163:418-423. doi: 10.1667/RR3316
- 234. Pandey R, Shankar BS, Sharma D, Sainis KB (2005) Low dose radiation induced immunomodulation: effect on macrophages and CD8+ T cells. Int J Radiat Biol 81:801-812. doi:10.1080/09553000500531886
- 235. Kataoka T, Mizuguchi Y, Notohara K, Taguchi T, Yamaoka K (2006) Histological changes in spleens of radio-sensitive and radio-resistant mice exposed to low-dose X-ray irradiation. Physiol Chem Phys Med NMR 38:21-29
- 236. Ren H, Shen J, Tomiyama-Miyaji C, Watanabe M, Kainuma E, Inoue M et al (2006) Augmentation of innate immunity by low-dose irradiation. Cell Immunol 244:50-56. doi: 10.1016/j.bbadis.2010.11.010
- 237. Shigematsu A, Adachi Y, Koike-Kiriyama N, Suzuki Y, Iwasaki M, Koike Yet al (2007) Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J Radiat Res 48:51-55. doi: 10.1269/jrr.06048
- 238. Gridley DS, Pecaut MJ, Rizvi A, Coutrakon GB, Luo-Owen X, Makinde AY et al (2009) Low-dose, low-dose-rate proton radiation modulates CD4(+) T cell gene expression. Int J Radiat Biol 85:250-261. doi: 10.1080/09553000902748609
- 239. Bogdándi EN, Balogh A, Felgyinszki N, Szatmári T, Persa E, Hildebrandt G et al (2010) Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat Res 174:480-489. doi: 10.1667/RR2160.1
- 240. Chen Y, Li Y, Zhang H, Xie Y, Chen X, Ren J et al (2010) Early effects of low dose C ion or X-ray irradiation on human peripheral blood lymphocytes. Adv Space Res 45:832-838. doi: 10.1016/j.asr.2009.09.024
- 241. Rizvi A, Pecaut MJ, Slater JM, Subramaniam S, Gridley DS (2011) Low-dose γ-rays modify CD4(+) T cell signalling response to simulated solar particle event protons in a mouse model. Int J Radiat Biol 87:24-35. doi: 10.3109/09553002.2010.518206
- 242. Chun SH, Park GY, Han YK, Kim SD, Kim JS, Lee CG et al (2012) Effect of low dose radiation on differentiation of bone marrow cells into dendritic cells. Dose Response 11:374-384. doi: 10.2203/dose-response.12-041.Lee
- 243. Joo HM, Nam SY, Yang KH, Kim CS, Jin YW, Kim JY (2012) The effects of low-dose ionizing radiation in the activated rat basophilic leukemia (RBL-2H3) mast cells. J Biol Chem 287:27789-27795. doi: 10.1074/jbc.M112.378497
- 244. El-Saghire H, Michaux A, Thierens H, Baatout S (2013) Low doses of ionizing

radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med 32:1407-1414. doi: 10.3892/ijmm.2013.1514

245. Gridley DS, Rizvi A, Makinde AY, Luo-Owen X, Mao XW, Tian J et al (2013) Spacerelevant radiation modifies cytokine profiles, signaling proteins and Foxp3+ T cells. Int J Radiat Biol 89:26-35. doi: 10.3109/09553002.2012.715792