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Overview of MRI Characteristics 

Continuous values are presented as mean ± standard deviation.  

 University Medical Center Groningen 

(UMCG) 

Martini Hospital Groningen 

(MHG) 

Radboud University Medical Center 

(RUMC) 

Dataset 20% 23% 57% 

Scanner Models Achieva* 33%, Ingenia* 3%, Aera** 

11%, Avanto** 10%, Espree** 1%, 

Prisma** 17%, Skyra** 24% 

Achieva dStream* <1%, Ingenia* 95%, 

Intera* 5% 

Prisma_fit** 8%, Skyra** 92%, 

TrioTim** <1% 

In-plane Resolution (mm) 0.43 ± 0.02 0.35 ± 0.00 00.51 ± 0.01 

Slice thickness (mm) 3.04 ± 0.04 3.05 ± 0.05 3.02 ± 0.08 

Spacing between slices (mm) 3.23 ± 0.08 3.05 ± 0.05 3.60 ± 0.07 

Number of averages 3.17 ± 0.07 1.05 ± 0.09 3.96 ± 0.64 

Echo Train Length 25.22 ± 1.76 20.27 ± 0.94 25.00 ± 0.00 

Field of View (mm) 186 x 186  (± 16) 348 x 348 (± 11) 194 x 194 (± 21) 

Table 1 Characteristics of T2W transversal MRI from UMCG, MHG, and RUMC. 

*: Philips Medical Systems, Best, The Netherlands, **Siemens Healthineers, Erlangen Germany. 
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Deep Learning Model Architectures 

 

Fig 1 Schematic representations of MRI reconstruction and detection model. (a) shows the 3D U-Net model1 structure for 

image reconstruction. (b) outlines the components of a ConvBlock3D of the reconstruction model. (c) presents the 3D 

Attention U-Net model2 used for lesion detection, and (d) details the ConvBlock3D with attention mechanism for the 

detection model.  

 
1Yin XX, Sun L, Fu Y, et al (2022) U-Net-Based Medical Image Segmentation. J Healthc Eng 2022 
2Saha, A., Hosseinzadeh, M., & Huisman, H. (2021). End-to-end prostate cancer detection in bpMRI via 3D CNNs: 

Effects of attention mechanisms, clinical priori and decoupled false positive reduction. Medical image analysis, 73, 

102155. https://doi.org/10.1016/j.media.2021.102155 

https://doi.org/10.1016/j.media.2021.102155
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Reader Study Materials and Methods 

For this study, 30 cases from the test set were selected, 15 with the smallest and 15 with the largest discrepancies in 

diagnostic predictions made by the DLDetect model. The cases were chosen based on the variance in predicted 

likelihoods for csPCa between the original (R1) and the accelerated reconstructed images (R4 or R8). These variances are 

indicative of potential diagnostic alterations attributable to hallucinatory artefacts introduced during the DL 

reconstruction process. 

A change in the estimated likelihood of csPCa at the patient level determines an 'inconsistent' comparison between an 

original and a DLRecon image. For example, if an unaccelerated image shows a 0.2 likelihood of csPCa, but its 

reconstructed version shows a 0.80 likelihood, and the patient's overall diagnosis is 'negative', this represents an 

inconsistent diagnosis. This inconsistency arises because the reconstruction shifts the case from a probable negative to a 

false positive result. 

A radiologist was tasked with assessing pairs of MR images to determine if diagnostic decisions based on R4 or R8 

reconstructions align with those from R1 images, focusing on the consistency of diagnostic features rather than image 

quality. The radiologist was informed that the set includes 15 cases likely to contain hallucinations and 15 unlikely, 

without knowledge of their specific classifications. Each evaluation involves a two-step process: first, examining the 

accelerated (R4 or R8) image to form an initial diagnostic impression, followed by reviewing the corresponding 

unaccelerated (R1) image. The radiologist then categorizes the case into one of three diagnostic outcomes: consistent 

diagnosis, minor diagnostic variation, or inconsistent diagnosis. The cases were presented in a randomized order. 

The 3-tier scoring system: 

1. Diagnostic Consistency: No meaningful differences. Similar diagnostic interpretation. 

2. Minor Diagnostic Variation: Minor differences possibly affecting diagnostic interpretation.  

(e.g. Pirads 2 on the accelerated images would become Pirads 1 on the unaccelerated images). 

3. Diagnostic Inconsistency: Clear differences affecting diagnostic interpretation. 

We implemented a 'Minor Diagnostic Variation' tier within our three-tier scoring system to accommodate the 

radiologist's diagnostic certainty. For binary statistical analysis, we classified level-1 scores as 'consistent' and combined 

level-2 and level-3 scores as 'inconsistent,' allowing us to distinguish between cases with diagnostic discrepancies and 

those without. 

The analysis focused on using Cohen's kappa to measure the level of agreement between the radiologist's evaluations and 

the AI-detected differences in diagnoses. Two kappa calculations were performed: one compared the results for images 

reconstructed at R4 acceleration and the other at R8 acceleration against the standard R1 images. 
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Fig 2 Agreement between Radiologist and AI Detection Evaluations for R1 vs R4 and R1 vs R8 Image Sets. The matrix 

displays the count of cases where the radiologist's evaluation is consistent (bottom row) or inconsistent (top row) with the 

AI detection model's evaluation (left and right columns). Darker shades indicate a higher number of cases. The left 

matrix compares R1 with R4 reconstructions, and the right matrix compares R1 with R8 reconstructions. 
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CLAIM: Checklist for Artificial Intelligencer in Medical Imaging 

This section contains the CLAIM3 checklist, finalised through consensus between two authors. Our responses are 

organised into four categories: 'Reported,' 'Not Reported,' 'Not Applicable,' and 'Not Explicit.' This organisation aims to 

succinctly showcase the extent to which our study adheres to the recommended practices for AI research in medical 

imaging. 

 

Section / Topic No. Item  

TITLE / ABSTRACT    

 1 Identification as a study of AI methodology, 

specifying the category of technology used 

(e.g., deep learning) 

Reported 

 2 Structured summary of study design, 

methods, results, and conclusions  

Reported 

INTRODUCTION    

 
3 Mongan J, Moy L, Kahn CE Jr.  Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for 

authors and reviewers.  Radiol Artif Intell 2020; 2(2):e200029. https://doi.org/10.1148/ryai.2020200029 

https://doi.org/10.1148/ryai.2020200029
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 3 Scientific and clinical background, including 

the intended use and clinical role of the AI 

approach 

Reported 

 4 Study objectives and hypotheses Reported 

METHODS    

Study Design 5 Prospective or retrospective study Reported 

 6 Study goal, such as model creation, 

exploratory study, feasibility study, non-

inferiority trial 

Not Explicit 

Data 7 Data sources Reported 

 8 Eligibility criteria: how, where, and when 

potentially eligible participants or studies 

were identified (e.g.,  symptoms, results 

from previous tests, inclusion in registry, 

patient-care setting, location, dates) 

Reported 

 9 Data preprocessing steps  Reported 

 10 Selection of data subsets, if applicable Reported 

 11 Definitions of data elements, with references 

to Common Data Elements 

Not 

Applicable 

 12 De-identification methods Not Reported 

 13 How missing data were handled Not 

Applicable 

Ground Truth 14 Definition of ground truth reference 

standard, in sufficient detail to allow 

replication 

Reported 

 15 Rationale for choosing the reference 

standard (if alternatives exist) 

Reported 

 16 Source of ground-truth annotations; 

qualifications and preparation of annotators 

Reported 

 17 Annotation tools Not Reported 

 18 Measurement of inter- and intrarater 

variability; methods to mitigate variability 

and/or resolve discrepancies 

Not 

Applicable 

Data Partitions 19 Intended sample size and how it was 

determined 

Not 

Applicable 

 20 How data were assigned to partitions; 

specify proportions 

Reported 

 21 Level at which partitions are disjoint (e.g., 

image, study, patient, institution) 

Not Explicit 
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Model 22 Detailed description of model, including 

inputs, outputs, all intermediate layers and 

connections 

Reported 

 23 Software libraries, frameworks, and 

packages 

Reported 

 24 Initialization of model parameters (e.g., 

randomization, transfer learning) 

Reported 

Training 25 Details of training approach, including data 

augmentation, hyperparameters, number of 

models trained 

Reported 

 26 Method of selecting the final model Reported 

 27 Ensembling techniques, if applicable Not 

Applicable 

Evaluation 28 Metrics of model performance Reported 

 29 Statistical measures of significance and 

uncertainty (e.g., confidence intervals) 

Reported 

 30 Robustness or sensitivity analysis Reported 

 31 Methods for explainability or interpretability 

(e.g., saliency maps), and how they were 

validated 

Reported 

 32 Validation or testing on external data Not Explicit 

RESULTS    

Data 33 Flow of participants or cases, using a 

diagram to indicate inclusion and exclusion 

Not Reported 

 34 Demographic and clinical characteristics of 

cases in each partition 

Not Reported 

Model performance 35 Performance metrics for optimal model(s) 

on all data partitions 

Reported 

 36 Estimates of diagnostic accuracy and their 

precision (such as 95% confidence intervals) 

Reported 

 37 Failure analysis of incorrectly classified cases Reported 

DISCUSSION    

 38 Study limitations, including potential bias, 

statistical uncertainty, and generalizability 

Reported 

 39 Implications for practice, including the 

intended use and/or clinical role  

Reported 

OTHER 

INFORMATION 

   

 40 Registration number and name of registry Not 

Applicable 
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 41 Where the full study protocol can be 

accessed 

Reported 

 42 Sources of funding and other support; role 

of funders 

Reported 

 


