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1. Brief overview on model development and validation 
Machine learning models were developed, validated, and generalized to estimate the 
individual probability of myocardial infarction (MI) in patients presenting to the emergency 
department (ED) having symptoms potentially indicative of MI. Separate models were 
estimated for each of the 6 investigated hs-cTn assays twice. 
• Single hs-cTn measurement: the model uses troponin information from the first troponin 

measurement only plus patient-specific data. 
• Serial hs-cTn measurement: the model uses troponin information from the first troponin 

measurement and a second troponin measurement with the same assay obtained at a 
later time point during ED stay plus patient-specific data. 

Details of the estimation approach is provided in the subsequent sections of this 
supplement. In brief: 
• All modeling steps were done with 10-fold cross-validation. 
• We first imputed missing data using multiple imputation.(1) 
• We employed 11 different learning machines for each of the hs-cTn assays within each 

cross-validation for both single and serial hs-cTn measurements and a total of 18 
clinical variables were initially offered (full models). 

• A clinical variable was included if it was selected by at least 5 machines (reduced 
models). This was thought to improve model stability. 

• Finally, we selected the four best-performing non-redundant machines for single hs-
cTn measurement as well as the four best-performing non-redundant machines for 
serial hs-cTn measurements and combined them into a super learner with equal 
weights for single and serial hs-cTn measurements separately to estimate MI 
probability. Individual MI probabilities estimated by both super learners were expressed 
as a number ranging theoretically between 0-100%. 

• The performance of the single and serial hs-cTn measurement super learner model 
was primarily assessed by logLoss (lower values indicate better performance) and, as 
secondary performance measures, by the AUC (higher values indicate better 
performance) as well as the Brier score (lower values indicate better performance). 

• We compared 
o the AUC, Brier score and logLoss of the reduced machines to 
o the full machines and to 
o machines using only hs-cTn measures without other clinical variables and to 
o machines including estimated glomerular filtration rate (eGFR) using the CKD-EPI 

formula.(2) 
• We compared single machines with super learner machines. 
• Comparisons were done with the Iman and Davenport version of the Friedman test 

followed by the Nemenyi post-hoc test.(3) 
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• The single and serial hs-cTn measurement models were validated in the external 
validation dataset and the generalization datasets after re-calibration using logistic 
regression with restricted cubic splines. Calibration curves were generated to assess 
model calibration. 

• DerSimonian and Laird random effect meta-analyses were estimated for averaging 
results between generalization data sets.(4) 

• Tables and figures were created to demonstrate the diagnostic performance across the 
spectrum of possible MI probability thresholds in one percent increments. Diagnostic 
performance measures included negative and positive predictive value (NPV and PPV), 
sensitivity and specificity, proportion of patients below or above a given MI probability 
threshold as well as corresponding 30-day incidence of MI or death. These tables and 
figures could be used to identify patients at low risk of MI suitable for outpatient 
management or those at high risk who are suitable to inpatient or invasive strategies. 

• Statistical analyses were performed in R version 4.2.0.(5) 
 

2. Source of Data 
The procedure was divided into three steps: 1. derivation, i.e., model development, 2. 
external validation, and 3. generalization. Five different troponin measurements were 
used for model development and in the cohort used for external validation. One, two or 
three different troponin assays were measured in the generalization cohorts. 
Measurements for a 6th troponin assay together with one of the other 5 troponin assays 
was available in an additional set of patients from the derivation cohort. Patients with ST-
segment elevation MI were excluded from all parts of this study. 

2.1 Model derivation data 
The Biomarkers in Acute Cardiac Care (BACC) study (6) was used for model 
development. BACC has been described previously (6). Briefly, we included 2719 patients 
presenting to the ED and chest pain unit of the University Heart Center Hamburg with 
suspected acute MI. All patients were enrolled between July 2013 and December 2019. 
The inclusion criteria were a suspected MI, age ≥ 18 years and the ability to provide written 
informed consent. We excluded all patients with ST-elevation MI (n = 144) from further 
analyses. An additional n = 135 BACC patients without ST-elevation MI was included for 
the integration of an additional assay into the machine learning model. The diagnosis was 
adjudicated in a blinded fashion by two physicians independently according to the fourth 
Universal definition of MI. In cases of disagreement a third physician was consulted and 
disagreements resolved. The BACC study was registered at www.clinicaltrials.gov 
(NCT02355457). 

2.2 External validation data 
The stenoCardia study (7) was used for model validation. The methodology, follow-up, 
and adjudication of outcomes in stenoCardia have been reported in detail previously (7). 
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Between January 2007 and December 2008, 1818 patients with suspected acute coronary 
syndrome were consecutively enrolled in an observational multicentre cohort at three 
German tertiary care centers (University Medicine Mainz, University Hospital Hamburg-
Eppendorf and Federal Armed Forces Hospital Koblenz). We excluded individuals with 
ST-segment-elevation MI (n=130) because the electrocardiographic diagnosis requires 
immediate treatment and biomarker diagnosis plays a minor role. The stenoCardia study 
was registered at www.clinicaltrials.gov (NCT03227159). 

2.3 Generalization data 
Generalization was done using the cohorts listed in Table 1. A brief description of each 
cohort is provided below. 

Table 1: Cohorts used in the generalization step of this project 

Name of cohort Country of origin Troponin assay(s) 
measured 

Sample size 

ADAPT-BSN (8) and IMPACT 
Summarized as ADAPT-BSN 

Australia Access hs-cTnI 
Architect hs-cTnI 
Elecsys hs-cTnT 

2,315 

ADAPT-CH (8), ADAPT-RCT 
(9), EDACS-RCT (10), SPACE-
24 (11) 
Summarized as ADPs-CH 

New Zealand Access hs-cTnI 
Architect hs-cTnI 
Elecsys hs-cTnT 

3,119 

DROP-ACS (12) Japan, Taiwan Elecsys hs-cTnT 1,420 
FASTEST Sweden Architect hs-cTnI 

Elecsys hs-cTnT 
1,233 

High-STEACS (13) Scotland Architect hs-cTnI 1,750 
LUND (14) Sweden Elecsys hs-cTnT 1,164 
Rapid-CPU (15) Germany Elecsys hs-cTnT 4,938 
ROMI (16) Canada Architect hs-cTnI 

Elecsys hs-cTnT 
1,366 

SAMIE Australia Access hs-cTnI 
Atellica hs-cTnI 

1,985 

SEIGE and SAFETY United States of America Architect hs-cTnI 
Atellica hs-cTnI 
Atellica VTLi hs-cTnI 

1,033 

STOP-CP (17) United States of America Elecsys hs-cTnT 1,457 
UTROPIA (18) United States of America Architect hs-cTnI 1,631 

2.3.1 ADAPT-BSN 
The 2-Hour Accelerated Diagnostic Protocol to Assess Patients With Chest Pain 
Symptoms Using Contemporary Troponins as the Only Biomarker (ADAPT) and the 
IMPACT study were prospective studies performed in 2008 and 2011. The primary aim of 
both studies was to evaluate accelerated chest pain pathways in the assessment of acute 
coronary syndrome. All patients ≥ 18 years presenting with suspected acute coronary 
syndrome to the ED at the Royal Brisbane and Women’s Hospital, Australia were 
included. The adjudication was performed by a physician in first instance and a second 
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cardiologist for all patients with a cardiac endpoint. It was based on all available clinical 
and imaging parameters up to 30 days. The troponin assay used to adjudicate patient 
outcomes was the Beckman-Coulter enhanced AccuTnI assay in routine use at the time. 
Both studies were registered at www.australianclinicaltrials.gov.au 
(ACTRN12611001069943 and ACTRN12611000206921). 

2.3.2 ADPs-CH 
The ADAPT-CH study was prospectively performed in accordance with the ADAPT-BSN 
study (see above). The ADAPT-RCT, registered at www.anzctr.org.au 
(ANZCTR12610000766011), aimed at comparing the effectiveness of a rapid diagnostic 
pathway with a standard-care diagnostic pathway for the assessment of patients with 
possible cardiac chest pain in a usual clinical practice setting. ED patients, where the 
attending physician was investigating for possible acute coronary syndrome, were 
included. Two senior clinicians adjudicated independently for any major adverse cardiac 
event within 30 days. A third senior clinician adjudicated any disagreements with the first 
two clinicians. The ED Assessment of Chest Pain Score – Randomized Controlled Trial 
(EDACS-RCT, registered at www.anzctr.org.au, ANZCTR12613000745741) aimed to test 
for the existence and size of any beneficial effect of using the EDACS-ADP protocol in 
routine clinical care compared with the ADAPT-ADP protocol. SPACE-24 was an 
observational study with additional sampling time points. Cohort selection and gold 
standard diagnosis for EDACS-ADP and SPACE-24 were identical to the ADAPT-RCT. 
All studies were initiated and based in Christchurch Hospital, New Zealand with majority 
of recruitment from this center. 

2.3.3 DROP-ACS 
The Diagnostics and Reduction of Asian Patients with Acute Coronary Syndrome Cost 
Analysis Base on the 0/1-h Algorithm Using High- sensitivity Cardiac Troponin (DROP-
ACS) study is prospective, international, multicenter, diagnostic, cohort investigation 
conducted at five sites in two countries (Japan and Taiwan) that began in November 2014. 
Briefly, we included patients presenting to the ED and chest pain. All patients were 
enrolled until June 2022. The inclusion criterion was adults (aged 30–89 years) presenting 
with chest pain related to a suspected cardiac cause. Implementation of the 0/1-h 
algorithm was left to the discretion of the attending physicians. The exclusion criteria were 
as follows: (1) STEMI; (2) chronic kidney disease (serum creatinine level > 3 mg/dL); (3) 
congestive heart failure, defined as the presence of hypoxia and typical pulmonary 
congestion confirmed on a chest radiograph; (4) ventricular tachycardia.  Informed 
consent was obtained from all patients. The gold standard diagnosis was adjudicated in a 
blinded fashion by two physicians independently according to the fourth Universal 
definition of MI. In cases of disagreement a third physician referred. The DROP-ACS study 
was registered at https://www.umin.ac.jp (UMIN000030668). 
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2.3.4 FASTEST 
The “Fast ASsessment of Thoracic pain in the Emergency department using high-
Sensitive Troponins” (FASTEST) study is a prospective multicenter study divided into two 
phases. The study was performed at six different Swedish centers enrolling unselected 
patients with acute chest pain presenting to the ED. The primary objective of the study 
was to determine whether a diagnostic strategy based on early serial measurement of 
high-sensitive troponins and a simple risk score will reduce the admission rate in patients 
with symptoms suggestive of ACS. The inclusion criteria were age ≥18 years; chest pain 
suggestive of ACS with duration of ≥10 min and onset of last episode within 12 hours; 
willingness to have extra blood samples taken; and written informed consent. The 
exclusion criteria were ST-segment elevation or new left bundle branch block. All patients 
underwent standard clinical assessment including repeated measurements of cTn, in 
phase 1 at ED presentation, 2 hours and 6–24 hours and in phase 2 at presentation, 1 
hour and 6-24 hours. At five centers, the Elecsys Troponin T high-sensitive assay (Roche) 
was used and at one center, the ARCHITECT STAT High Sensitive Troponin-I assay 
(Abbott). Plasma samples for biobanking were obtained at presentation, after 2h (phase 
1), 1h (phase 2) and 6– 24 hours. After discharge from the hospital, all patients were 
followed for cardiac events by telephone contacts and, if necessary, by validation in 
patient records at 30 days. No patient was lost to follow-up. The index diagnosis and 
cardiovascular events up to 30 days were adjudicated by independent reviewers. 

2.3.5 High-STEACS 
The High-Sensitive Troponin in the Evaluation of Acute Coronary Syndrome (High-
STEACS) sub-study prospectively enrolled patients with suspected acute coronary 
syndrome presenting to the Royal Infirmary of Edinburgh, Edinburgh, Scotland (clinical 
trials registration at www.clinicaltrials.gov, NCT01852123). All patients provided written 
informed consent. Patients were excluded if they had a previous presentation during the 
study period or were not resident in Scotland. Patients with ST-elevation MI were not 
included. The final diagnosis was adjudicated for all patients by two independent 
physicians, with consensus from a third physician where there was discrepancy. Patients 
were classified as having type 1 MI, type 2 MI or myocardial injury in accordance with the 
third universal definition of MI. Any hs-TnI concentration above the sex-specific 99th 
centile upper reference limit (16ng/L for women, 34ng/L for men) was considered evidence 
of myocardial necrosis. All patients were followed for at least one year for subsequent MI 
or cardiac death. 

2.3.6 LUND 
The Lund Chest Pain Study included patients presenting with nontraumatic chest pain to 
the ED of Skåne University Hospital in Lund (clinical trials registration at 
www.clinicaltrials.gov, NCT05484544). In this prospective observational study, clinical 
data, 1h hs-TnT, and ED physicians’ assessment of the patient history and ECG were 
collected. The primary objective was to evaluate the diagnostic accuracy of the 1h 
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algorithm when used in conjunction with patient history and ECG, to predict MACE within 
30 days as compared to using 1h hs-TnT alone. The goldstandard was a final adjudicated 
diagnosis of 30-day MACE, as decided by independent reviews by two cardiologists, and 
in case of disagreement, by a third cardiologist. The cardiologists were blinded to the 1h 
hs-TnT. The adjudicated diagnoses were based on all available clinical information from 
all hospitals in Sweden within 60 days from the index visit, such as patient history and 
results of blood samples, ECG, echocardiography, stress test, and coronary angiography. 

2.3.7 Rapid-CPU 
The RAPID-CPU consists of two study populations (registration at www.clinicaltrials.gov, 
NCT03111862). Consecutive patients presenting to the ED at University hospital 
Heidelberg, Germany, with acute symptoms suggestive of acute coronary syndrome were 
included in a retrospective registry study. Consecutive patients with suspected acute 
coronary syndrome were recruited between 1 July 2016 and 30 June 2017 (cohort 1) and 
between 31 June and 1 July 2018 (cohort 2). In both populations, a final adjudicated 
diagnosis was made by two independent cardiologists. A third cardiologist refereed in 
cases of disagreement. The adjudication was based on all available clinical and imaging 
parameters (e.g. ECG, Echo, MRI, Angiography), as well as hs-cTnT. The criteria for the 
diagnosis of MI were based on the fourth universal MI definition. 

2.3.8 ROMI 
After approval from the research ethics board, the Optimal Troponin Cutoffs for acute 
coronary syndrome in the ED (ROMI-3: Rule-out MI 3h; registration at 
www.clinicaltrials.gov, NCT01994577) study prospectively enrolled consecutive adults 
(18 years or older) who presented to the ED with symptoms suggestive of ACS and for 
whom the ED physician ordered cardiac troponin. The adjudication process was led by an 
emergency physician with at least 2 of the study authors independently adjudicating the 
outcomes with disagreements not resolved by consensus referred to a third reviewer. All 
outcome adjudicators were blinded to the hs-cTn results, with MI in the study population 
defined as per the Third Universal Definition with the contemporary Abbott cTnI assay.  

2.3.9 SAMIE 
The Suspected acute MI in Emergency (SAMIE) study included 2022 patients presenting 
to the Emergency Department of five Australian hospitals. All patients were enrolled 
between November 2020 and September 2021. The inclusion criteria were age ≥ 18 years 
and the treating clinician investigated for acute MI. Exclusion criteria were all patients who 
presented with ST-elevation MI who were directly transferred for cardiac catheterization, 
patients transferred from another hospital, previous enrolment within 30 days, pregnancy, 
unwillingness or inability to provide informed consent, and recruitment was considered 
inappropriate (e.g., palliative patient). The gold standard diagnosis was adjudicated in a 
blinded fashion by one cardiologist to the fourth Universal definition of MI. A second 
cardiologist reviewed all cases of type 2 MI, with a third clinician reviewing any 
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discrepancies. The SAMIE study was registered at https://anzctr.org.au 
(ACTRN12621000053820). 

2.3.10 SEIGE and SAFETY 
The SEIGE and SAFETY studies are prospective, observational studies of consecutive 
patients presenting to the ED in whom hs-cTnI measurements were obtained. The 
purpose of the study is to evaluate the clinical performance of the Siemens Atellica VTLi 
point of care hs-cTnI test system (SEIGE) and the Attelica IM central laboratory hs-cTnI 
assay (SAFETY) for the diagnosis and rule out of MI in patients presenting to the 
emergency department in whom serial cTnI measurements are obtained on clinical 
indication. All participants were enrolled between October 2020 and October 2021 at the 
Hennepin County Medical Center (Minneapolis, MN, USA). The gold standard diagnosis 
was adjudicated in a blinded fashion by two physicians independently according to the 
fourth Universal Definition of MI. The study was registered at www.clinicaltrials.gov 
(NCT04772157).  

2.3.11 STOP-CP 
The High Sensitivity Cardiac Troponin T to Optimize Chest Pain Risk Stratification (STOP 
CP) study has been described previously(17). Briefly, the study included 1457 patients 
presenting to the ED across eight sites in the United States with suspected acute coronary 
syndrome. All patients were enrolled between July 2013 and December 2019. The 
inclusion criteria were suspected ACS, age ≥ 21 years and the ability to provide written 
informed consent. The following patients were excluded: Patients with ST-segment 
elevation MI at ED presentation, systolic blood pressure <90 mm Hg, a life expectancy of 
<90 days, a noncardiac illness requiring admission, lack of capacity to provide consent, 
inability to be contacted for follow-up, non–English speaking, pregnancy, and prior 
enrollment in the current study. The gold standard diagnosis was adjudicated in a blinded 
fashion by two physicians independently according to the fourth Universal definition of MI. 
In cases of disagreement a third physician referred. The STOP-CP study was registered 
at www.clinicaltrials.gov (NCT02984436). 

2.3.12 UTROPIA 
The Use of TROPonin In Acute coronary syndromes (UTROPIA) study is an observational 
cohort study performed at the Hennepin County Medical Center, Minneapolis, Minnesota, 
United States. Patients presenting to the emergency department within the defined study 
period (February 2014 to June 2016) were considered for inclusion. Participants were 
included, when they had two or more cTnI values ordered for any clinical indication with 
specimen available for hs cTnI assay, 18 years of age or older, ECG done on admission 
and agreed to disclosure research. All cases with at least one hs-cTnI >99th percentile 
were adjudicated according to the Third Universal Definition of MI consensus 
recommendations by two clinicians following review of all available medical records 
including 12-lead ECG, echocardiography, angiography, hs-cTnI concentrations, and 
clinical presentation. Cases with an adjudication discrepancy were reviewed and 
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adjudicated by a third senior clinician. The study was registered at www.clinicaltrials.gov 
(NCT02060760). 

3.  Variables used for analyses 

3.1 Outcome variable 
The primary outcome was acute Non-ST-elevation MI at index presentation (yes/no). 
Individuals without a diagnosis were excluded.  
 
Secondary outcome was the 30-day incidence of death or MI. 
 

3.2 Independent variables (candidate features) 

Both troponin-related variables (features; see Troponin measurements were log-
transformed using the natural logarithm to reduce skewness. For the same reason, odd 
roots of the troponin rate were examined, and the 5th root was selected. Log troponin 
measurement features and limit of detection indicators were multiplied by 10 to reduce 
the magnitude of the coefficients obtained in logistic regression. One troponin 
measurement was randomly selected in case more than one troponin measurement was 
available at follow up. 

Table 2) and non-troponin variables, termed patient-specific features were considered 
during model development (Table 3). Six different high-sensitivity troponin assays were 
available for model development (Table 4). Non-high-sensitivity troponin assays did not 
qualify for model development. 

Troponin measurements were log-transformed using the natural logarithm to reduce 
skewness. For the same reason, odd roots of the troponin rate were examined, and the 
5th root was selected. Log troponin measurement features and limit of detection indicators 
were multiplied by 10 to reduce the magnitude of the coefficients obtained in logistic 
regression. One troponin measurement was randomly selected in case more than one 
troponin measurement was available at follow up. 

Table 2: Troponin-based candidate features 

Troponin concentration at baseline 
Troponin concentration at baseline ≥ than lower limit of quantification  

Troponin concentration at second measurement time point (2nd troponin) 

2nd troponin concentration ≥ lower limit of quantification 
Troponin rate (change over time) 
Time between blood samples for troponin measurements 
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Table 3: Non-troponin candidate features  

Variable Coding Remarks 
Age years  
Sex male/female  
Heart failure yes/no  
History of coronary 
artery disease 

yes/no  

Family history of 
coronary artery disease 

yes/no Father/Brother with MI ≤ 55 years, 
Mother/Sister with MI ≤ 65 years 

Atrial fibrillation yes/no  
Systolic blood pressure mm Hg  
Heart rate bpm  
Hypertension yes/no  
Hyperlipoproteinemia yes/no  
Diabetes yes/no  
Ever smoker  yes/no  
Body mass index (BMI) (kg/m²)  
Electrocardiogram 
(ECG) ischemic signs 

yes/no The ECG was determined to be ischemic, 
when ischemic signs, ventricular arrhythmias 
(VT or VF), high-grade (>1) atrio-ventricular 
block, right, left, or bifascicular bundle branch 
block were observed. Ischemic signs included: 
any ST-depression (≥0.05 mV) or T-wave 
inversion (≥0.1mV) in two contiguous leads, or 
ST-elevation (≥0.1 mV or ≥0.2 mV in V2/3) 

Symptom onset time ≥ 
than 3 hours 

yes/no  

Table 4: Troponin assays used in this project 

High-sensitivity troponin Manufacturer Product name 
I Abbott Architect 
I Beckman-Coulter Access 
I Mitsubishi Pathfast 
I  Siemens Atellica 
I Siemens Atellica VTLi 
T Roche Elecsys 
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4. Model development (derivation) 
A five-step approach was taken to for model development using the BACC study: 
1. Imputation of missing data: Missing data in BACC were imputed using multiple 

imputation with mice (19). Five imputed datasets were generated; one randomly 
selected imputed dataset was kept for analyses. Only those subjects were kept for 
troponin assay-specific analyses if at least one assay measurement was available for 
this subject. 

2. Full machines: Different learning machines were computed using all candidate 
features as input. The machine learning methods used in this project are described in 
Table 5. The machines lr, lrbs, lrus, glmboost, lrrcs, en, mars, gbm, rf, rffs, and svm 
were computed using the candidate features defined above. Support vector machines 
(SVM) were only used for methodological comparisons.  
Performance measures The following three measures were calculated to determine 
the performance of machines and super learners: 

• LogLoss (primary measure): 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = − !
"
∑ (𝑦# 	ln(𝑝#) + (1 −	𝑦#)	ln(1 −	𝑝#))"
#$! 	. 

Its variance is given by 𝑉𝑎𝑟(𝐿𝑜𝑔𝐿𝑜𝑠𝑠) 	= 	 !
"!
∑ 5ln 51 −	𝑝#𝑝#(1 −	𝑝#)ln

%"
(!'	%")

66"
#$!  . 

• Brier score (secondary measure; 20): 𝐵𝑆	 = 	𝔼(y* 	− 	ℙ(𝑦# = 	1|𝒙*))+ . The variance 
expression has been provided by Bradley, Schwartz (20). 

• AUC (secondary measure): the definition of the AUC has been provided, e.g., by 
Wang and Guo (21). We stress that the AUC measures classification performance. 
The variance expression has been provided by Wang and Guo (21). R code for 
performing the variance calculations are available in Appendix C of Wang and Guo 
(21). The code is displayed in Section 9 of this document. 

Cross-validation procedure Estimation was done using 10-fold cross-validation 
(10CV). Specifically, the dataset was randomly divided into v = 10 equally sized parts, 
the so-called folds. Each fold was removed from the dataset in turn; all machines were 
fitted using the remaining 9 folds, and its performance was evaluated in the left-out 
fold. At the end of this procedure, 10 estimates of the machines and their performance 
measures were obtained. The average over the 10 estimates was taken as 
performance measure. Machines were only compared for the same troponin-assay, 
and the same 10 folds were used to allow fair comparison of the machines. 
When a machine was fitted on the selected 9 folds, all the computations required to 
obtain the machine were performed inside the 9 folds. In particular, if there were 
parameters that required tuning, this was done inside of the 9 folds, possibly with a 
new CV inside the 9 folds. 
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3. Feature selection: The number of features was reduced using the CV procedure 
described above. Six of the full machines were used for the feature selection: lrbs, lrus, 
glmboost, en, mars and rffs. Since the same 10 CV folds were utilized in all steps of 
model development, the CV procedure was also used for feature selection. The 
following criteria were used to select features that were subsequently used in the 
reduced machines: 
• If a feature was selected ≥ 5 times out of the 10 CV folds for ≥ 1 assay model, the 

feature was kept. 
• Identical features were selected across assays. This means that if a feature was 

selected for a specific assay, it was automatically kept for the other assays. 
• Age was kept. 
• Sex was kept. 
• If a troponin measurement was selected, the corresponding limit of quantification 

indicator for that measurement was kepty, and vice versa. 
4. Reduced learning machines: Learning machines were recomputed using the 

selected features only. Analyses were restricted to machines without intrinsic feature 
selection. lrbs, lrus and rffs were thus not computed on the reduced feature set. 

5. Super learner: The four learning machines with the best LogLoss performance on the 
reduced feature set across all assays were used to develop super learners (SL) with 
equal weights (Slew).  
For a single hs-cTn measurement model, scatterplots showed that cross-validated MI 
probabilities of en, glmboost and lr were almost identical. For this reason, only 
glmboost was selected because it performed slightly better than en and lr.  
An optimized SL was obtained weighting the machines using a convex combination of 
using a linear lasso with non-negative normalized coefficients. The LogLoss and 10CV 
was used to select the lasso penalization parameter.  
Slews combining the best two, three, and four reduced machines were developed, and 
their performance was evaluated using the LogLoss. Its performance was compared 
with the other reduced machines and the optimized SL. The SL with the best 
performance across troponin assays was selected as the machine for estimating the 
probability of AMI. 

6. Comparison of learning machines: To demonstrate the adequacy of the approach 
taken, the performance of the Slew in the reduced model was compared to  
a) the single machines,  
b) the Slew of the full models,  
c) the Slew of the models including troponin only,  
d) the Slew of full models also including eGFR,  
e) the Slew of reduced models also including eGFR.  
For these comparisons across troponin assays, we used the method described by 
Demšar (22). In brief, we first used the Iman and Davenport modification of the 
Friedman test (23) as global test. This was followed by the Nemenyi post-hoc test (24). 
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Table 5: Machine learning approaches used in the project 

Machine R function 
(R package) 

Description 

lr glm 
(stats) 

Logistic regression with all features entering the 
model in a linear form 

lrbs fastbw 
(rms) 

Logistic regression with backward elimination. 
Candidate features were modeled linearly, and 
backward elimination was performed. This 
procedure starts with a model including all 
candidate predictors and drops the least significant 
at the level 𝜶. This is repeated until no non-
significant terms remain. The significance level 𝜶 
was set to 0.05. 

lrus glm 
(stats) 

Logistic regression with univariate screening. 
Logistic regressions using each candidate feature 
as the only predictor were computed. The final 
logistic regression includes those variables with p-
value less than 0.05 in the univariate models. 

glmboost glmboost 
(mboost) 

Component-wise gradient boosting using 
univariate logistic regressions as the base learner 
(25). All features were centered. The number of 
boosting iterations was tuned using 10-fold cross-
validation. The maximum number of boosting 
iterations was set to 10000. The model is described 
in detail below. 

lrrcs lrm, rcs 
(rms) 

Logistic regression with the continuous predictors 
modeled in a flexible manner using restricted cubic 
splines. Five knots placed at the 0.05, 0.275, 0.5, 
0.725 and 0.95 quantiles of each continuous 
variable were used. 

en glmnet 
(glmnet); 
tidymodels for 
tuning 

Elastic net logistic regression. The elastic net is a 
mixture of the ridge (𝑳𝟐 penalization) and the lasso 
(𝑳𝟏 penalization) (26). As these two the elastic net 
shrinks the coefficients towards zero and like the 
lasso it performs feature selection. The elastic net 
mixing parameter and the penalization parameter 
were estimated by 10-fold cross-validation (10CV). 
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mars earth (earth); 
tidymodels for 
tuning 

Multivariate adaptive regression splines (27). 10CV 
was used to select the following parameters: 
maximum degree of interactions and maximum 
number of terms in the model. 

gbm xgboost 
(xgboost); 
tidymodels for 
tuning 

Gradient boosting machine with trees as the base 
learners. The following hyperparameters were 
estimated by minimization of the LogLoss using 
10CV: depth of the tree, number of trees, learn rate, 
reduction in the loss function required to split 
further, proportion of candidate variables sampled 
at each split, proportion of observations used to fit 
each tree and minimum number of observations in 
a terminal node. The model is described in detail 
below. 

rf ranger 
(ranger) 

Random forest (RF) in regression mode with 
subsampling and maximally selected rank statistics 
as split rule (28). The number of variables to 
consider for splitting at each node (mtry), minimal 
terminal node size (nodesize) and the sample 
fraction sample.fraction were tuned. The ranger 
function from the ranger package was used (29). 
The model is described in detail below. 

rffs ranger, 
importance_pvalues 
(ranger) 

RF with feature selection in regression mode with 
subsampling and maximally selected rank statistics 
as split rule (28). First parameters mtry, nodesize 
and sample.fraction tuned. Second, permutation p-
values were computed using 1000 permutations 
(30). Features were kept if p < 0.05. Third, a new 
RF was computed tuning the same parameters as 
before. 

svm ksvm (kernlab); 
tidymodels for 
tuning 

Support vector machines with radial basis function 
kernel. Minimization of the LogLoss using 10CV 
was used to select the parameters cost of 
constraints violations and the inverse kernel width 
for the radial basis function 

sl  Super learner (SL). The SL merges different 
machines by assessing their performance and then 
generating an optimal convex combination of the 
predicted probabilities from the different machines 
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(31). Ten-fold cross-validation and the LogLoss 
were used to select the optimal combination. 

slew  Super learner with equal weights. This simpler 
version of the SL uses a convex combination with 
identical weights. 

 

5. Validation of model 
The assay-specific models were applied in stenoCardia for validation. Multiple imputation 
was performed as in the BACC data. Probability estimates were recalibrated using the 
four different approaches described in the next Section 6. 

6. Calibration 
Four calibration approaches were employed in both the validation and the generalization 
step: no calibration, logistic calibration, logistic calibration with restricted cubic splines and 
Elkan’s approach to recalibration. 
The performance was evaluated using the measures described in Section 4, item 2. 

6.1 Probability estimation – uncalibrated 
Probability estimates were obtained for the validation data and for each of the m imputed 
datasets from generalization. Probability estimates were calculated for the three machines 
single machines included in the Slew and the Slew for the single hs-cTn measurement 
model, and all four machines included in the Slew and the Slew for the serial hs-cTn 
measurement model. 

6.2 Probability estimation – calibrated 

6.2.1 Logistic regression with restricted cubic splines (RCS) (logreg-RCS) 
To calibrate probability estimates, we used logistic regression with restricted cubic splines 
(RCS) with k = 4 knots (32). In case of numerical instabilities, we reduced the number the 
knots. The location of the knots were chosen using the quantiles of the data (32). 

6.2.2 Logistic regression (logreg) 
For sake of comparison with logreg-RCS we also used logistic regression calibration, i.e., 
a logistic regression was fitted to the outcome using the linear predictor from the 
probability of NSTEMI as explanatory variable. 

6.2.3 Elkan’s approach 
The calibrated probability can be estimated using the prevalence of MI in the old and new 
populations using the update formula (33)  

𝑝. = 𝑃(𝑦 = 1|𝒙) = 𝑏.
𝑝(1 − 𝑏)

𝑏(1 − 𝑏) + 𝑏.(𝑝 − 𝑏)	, 
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where 𝑏 (𝑏.) is the prevalence in the old (new) population, and 𝑝 (𝑝.) is the probability 
estimate in the old (new) population. 

7. Generalization of model 
The assay-specific models for the single and serial hs-cTn measurement models were 
applied to the international cohort studies described in Section 2.3. Calibration analyses 
were performed as described for stenoCardia. 

7.1 Multiple imputation 
For the imputation, the following MI strategy was adopted in conjunction with Rubin’s rule 
(RR). The imputation strategy for each cohort of interest depended on whether all 
variables of interest were present and contained data in the dataset (Section 7.1.1), or if 
one or more variable of interest is missing (Section 7.1.2).  
The imputation was implemented using the mice package, and perfect mean matching 
(PMM) with m = 100 imputations and iter = 15 iterations. iter = 50 was selected with m = 
5 to visualize imputation quality. The variables from the reduced model were included in 
the multiple imputation, but adjudicated outcomes or incident cardiovascular events were 
not imputed. 
Following the imputation of the cohorts, the imputed datasets were extracted individually 
or as a stacked dataset using the complete function. 
The RR MI pools effect estimates across m imputed datasets is �̅� = !

/
∑ 𝜃0/
0$! 	. 

Additionally, the pooled standard error was calculated using the within and between 
imputation variances. The within imputation variance, which reflects the sampling 
variance, is calculated as 𝑉𝑎𝑟1 = !

/
∑ 𝑆𝐸0+/
0$! 	, where 𝑆𝐸0+ is the squared standard error 

(SE) estimated in each imputed dataset 𝑑. 
The between imputation variance, which reflects extra variance due to the missing data, 
is calculated as  

𝑉𝑎𝑟2 =	
∑ (𝜃0 − �̅�	)+/
0$!

𝑚 − 1 	. 

The total variance is then given by 

𝑉𝑎𝑟34567 = 𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 +
𝑉𝑎𝑟2
𝑚 	. 

7.1.1 Imputation when all variables were present 
When all variables were present within the cohort of interest, cohort-specific imputation of 
missing data was performed using data only from the cohort of interest. 

7.1.2 Imputation in the presence of missing variables 
When at least one variable was completely missing within the cohort of interest, global 
imputation was applied using the original data from all cohorts, in which the troponin assay 
of interest was measured. 
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7.2 Performance measures 
For each cohort of interest, the LogLoss, Brier score and AUC were calculated. The point 
estimate and variance of the LogLoss, Brier score and AUC were pooled across the m 
imputed datasets using RR. 

7.3 Classification performance 
The classification performance was quantified by pooling the sensitivity, specificity, as well 
as the positive and negative predictive values. To quantify the variance of these 
parameters across the imputed datasets, the binomial variance estimator Var(�̂�) = %(!'%)

"
 

was used. 

7.4 Meta-analysis: pooling of estimates across studies 
Estimates were pooled across cohorts using random effect (RE) meta-analysis according 
to DerSimonian and Laird (4). 

7.5 Plots 
For visualization, local estimated scatterplot smoothing (LOESS) curves representing the 
MI and the calibrated predicted probability were created. 

7.6 Incorporation of the Siemens Atellica VTLi 
While the other five investigational hs-cTn assays were all available at time of model 
development, the Atellica VTLi was added to the super learners post-hoc by estimating a 
total least squares regression from the Atellica VTLi hs-cTnI to the Atellica hs-cTnI using 
135 subjects from BACC with two troponin measurements available each on both assays. 
Total least squares (TLS) regression, also termed Deming regression, with intercept and 
slope was estimated to predict Siemens Atellica troponin concentrations from Siemens 
Atellica VTLi troponin concentrations. The single and serial hs-cTn measurement models 
were applied after predicting the Atellica troponin concentrations from the Atellica VTLi 
hs-cTn concentrations. 
 

8. Sample size considerations 
Sample size considerations were done for the derivation, validation, and generalization 
cohorts as well as the sum over all generalization cohorts using the approach of Riley et 
al.(34) To this end, sample sizes were fixed as well as the proportion of myocardial 
infarctions. The precision for the MI probability was estimated. In the derivation cohort, 
the precision was well below 0.015, for the validation it was 0.0170. Finally, each cohort 
from the generalization studies, the precision was between 0.01 and 0.023.  

Table 6: Sample size estimation 

Stage of study Name of cohort Sample size Proportion 
of MIs 

Precision for outcome 
proportion 

Derivation BACC 2,575 0.14 0.0135 
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Validation stenoCardia 1,677 0.17 0.0180 
Generalization ADAPT-BSN 2,315 0.11 0.0155 
 ADPs-CH 3,119 0.11 0.0132 
 DROP-ACS 1,420 0.11 0.0200 
 FASTEST 1,233 0.11 0.0195 
 High-STEACS 1,750 0.11 0.0177 
 LUND 1,164 0.11 0.0217 
 Rapid-CPU 4,938 0.11 0.0105 
 ROMI 1,366 0.11 0.0200 
 SAMIE 1,985 0.11 0.0165 
 SEIGE and SAFETY 1,033 0.11 0.0230 
 STOP-CP 1,457 0.11 0.0194 
 UTROPIA 1,631 0.11 0.0183 
 Total 23,411 0.11 0.0050 

 

9. Calculation of the variance of the AUC 

The code displayed in this section follows the code provided by Wang and Guo (21). 

#mydata: a data frame with a column called “Y” for the binary outcome variable 
#myfit: a glm object (it can be changed to other types of model object) 
#B: the number of partitions used to realize the variance estimator (see Model 
1) 
V_AUC_partition <- function(mydata, myfit, B) 
{ 
#data subsets for positive and negative classes 
pos_class <- subset(mydata,Y==1) 
neg_class <- subset(mydata,Y==0) 
m <- min(nrow(pos_class), nrow(neg_class)) 
phi_bar_b <-array(NA, B) 
WPSS <- rep(NA,B) 
for (b in 1:B) 
{ 
#for each sampled partition 
kernel <- array(NA, m) 
pos_shuf <- sample(which(mydata$Y==1), m, replace=F) 
neg_{s}huf <- sample(which(mydata$Y==0), m, replace=F) 
prob <- predict.glm(myfit, type=“response”) 
for(pair in 1:m) 
{ 
#for each block of paired data based on the partition 
kernel[pair] <- as.numeric(prob[pos_shuf[pair]] > prob[neg_shuf[pair]]) 
} 
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phi_bar_b[b] <- mean(kernel) 
#compute the within-partition sum of squares 
 
WPSS[b] <- (1/(m-1) )* sum ((kernel - ph_bar_b[b])̂ 2) 
} 
phi_bar <- mean(phi_bar_b) 
#compute the between-partition sum of squares 
BPSS <- mean((phi_bar_b-phi_bar)̂ 2) 
V_AUC_part <- (1/m)*mean(WPSS) - BPSS 
return(V_AUC_part) 
} 
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