Personalized diagnosis in suspected myocardial infarction

Supplementary Material:

Supplemental Figures and Tables

April 26, 2023

Version 4.5

1. SUPPLEMENTAL FIGURES......4

FIGURE S1: FLOW-CHART OF STUDY DESIGN
FIGURE S2: PERFORMANCE COMPARISON OF THE SUPER LEARNER FROM THE REDUCED MODEL
(REDUCED) AGAINST A MODEL USING TROPONIN ONLY (TROPONIN), AND THE FULL MODEL (FULL)
AVERAGED ACROSS ALL HS-CTN ASSAYS IN THE DERIVATION COHORT (UPPER PANEL) AND THE
VALIDATION COHORT (LOWER PANEL)
FIGURE S3: PERFORMANCE COMPARISON OF THE SUPER LEARNER FROM THE REDUCED MODEL (SLEW)
AGAINST SINGLE LEARNING MACHINES (LR, LRRCS, EN, GLMBOOST, MARS, GBM, SVM, RF) AVERAGED
ACROSS ALL HS-CTN ASSAYS IN THE DERIVATION COHORT (UPPER PANEL) AND THE VALIDATION COHORT
(LOWER PANEL)
FIGURE S4: PERFORMANCE COMPARISON OF THE SUPER LEARNER FROM THE REDUCED MODEL
(REDUCED) AGAINST THE FULL MODEL AND THE REDUCED MODEL INCLUDING EGFR (FULL EGFR AND
REDUCED EGFR, RESPECTIVELY) AVERAGED ACROSS ALL HS-CTN ASSAYS IN THE DERIVATION COHORT
(UPPER PANEL) AND THE VALIDATION COHORT (LOWER PANEL)
FIGURE S5: DISCRIMINATION MEASURES USING THE SUPER-LEARNER BASED ON A SINGLE AND ON A
SERIAL HS-CTN MEASUREMENT PER ASSAY
FIGURE S7: CALIBRATION PLOT FOR SINGLE AND SERIAL HS-CTN MEASUREMENT PER ASSAY AND THE
GENERALIZATION DATASETS
FIGURE S8: DIAGNOSTIC ACCURACY USING THE MYOCARDIAL INFARCTION PROBABILITY AS THRESHOLD
FIGURE S9: SCATTERPLOT AND DIAGNOSTIC PERFORMANCE USING ATELLICA VTLI

TABLE S1: TRIPOD CHECKLIST
TABLE S2: BASELINE CHARACTERISTICS FOR DERIVATION, VALIDATION AND GENERALIZATION COHORTS
INCLUDING INFORMATION ON MISSINGNESS
TABLE S3: BASELINE CHARACTERISTICS FOR ALL GENERALIZATION COHORTS
TABLE S4: BASELINE CHARACTERISTICS FOR ALL GENERALIZATION COHORTS STRATIFIED BY MI
DIAGNOSIS
TABLE S5: DETAILED BASELINE CHARACTERISTICS FOR ALL COHORTS OF PARAMETERS USED IN THE
MODELS
TABLE S6: VARIABLES AND MACHINES SELECTED FOR THE SINGLE AND THE SERIAL HS-CTN
MEASUREMENT MODELS
TABLE S7: DISCRIMINATION MEASURES (LOGLOSS, AUC, BS) FOR SINGLE AND SERIAL HS-CTN
MEASUREMENT FOR EACH COHORT AND THE GLOBAL DATASET PER ASSAY, UNCALIBRATED AND
CALIBRATED USING LOGISTIC REGRESSION, CALIBRATION USING LOGISTIC REGRESSION WITH
RESTRICTED CUBIC SPLINES AND BY ELKAN CALIBRATION
TABLE S8: DIAGNOSTIC PERFORMANCE MEASURES FOR USING DIFFERENT MI PROBABILITIES AS
THRESHOLDS FOR THE SINGLE HS-CTN MEASUREMENT MODEL

TABLE S9: DIAGNOSTIC PERFORMANCE MEASURES FOR USING DIFFERENT MI PROBABILITI	ES AS
THRESHOLDS FOR THE SERIAL HS-CTN MEASUREMENT MODEL	32
TABLE S10: COMPARISON OF ESC 0H, 0/1H AND 0/2H ALGORITHMS WITH THE ARTEMIS PAT	THWAY
USING A SINGLE OR A SERIAL HS-CTN MEASUREMENT	33

1. Supplemental Figures

Figure S1: Flow-chart of study design

This figure illustrates the workflow of the entire study design. Abbreviations: 1 MM = single hs-cTn measurement, 2 MM = serial hs-cTn measurement

Figure S2: Performance comparison of the super learner from the reduced model (reduced) against a model using troponin only (troponin), and the full model (full) averaged across all hs-cTn assays in the derivation cohort (upper panel) and the validation cohort (lower panel).

Comparison between models based on the LogLoss performance measure averaged over all troponin assays. In the validation cohort probability estimates were calibrated using logistic regression with restricted cubic splines. The super learner from the reduced model had the lowest average rank, i.e., the best performance, followed by the super learner from the full model. The super learner based on the troponin only model always performed worst. If the average rank difference between models was larger than the critical difference 1.5, the performance was significantly different at the 5% test-level using the Nemenyi post-hoc test, which adjusts for multiple testing.

Figure S3: Performance comparison of the super learner from the reduced model (slew) against single learning machines (Ir, Irrcs, en, glmboost, mars, gbm, svm, rf) averaged across all hs-cTn assays in the derivation cohort (upper panel) and the validation cohort (lower panel).

Comparison between models based on the LogLoss performance measure averaged over all troponin assays. In the validation cohort probability estimates were calibrated using logistic regression with restricted cubic splines. The super learner from the reduced model (slew) had the lowest average rank in three of four cases. The random forest (rf) performed best on the validation data for the model with serial measurements. If the average rank difference between models was larger than the critical difference 5.4, the performance was significantly different at the 5% test-level using the Nemenyi post-hoc test, which adjusts for multiple testing. svm: support vector machine; glmboost: logistic boosting, en: elastic net; Ir: logistic regression; Irrcs: logistic regression with restricted cubic splines; gbm: gradient boosting; mars: multiple adaptive regression splines.

Figure S4: Performance comparison of the super learner from the reduced model (reduced) against the full model and the reduced model including eGFR (full egfr and reduced egfr, respectively) averaged across all hs-cTn assays in the derivation cohort (upper panel) and the validation cohort (lower panel).

Comparison between models based on the LogLoss performance measure averaged over all troponin assays. In the validation cohort probability estimates were calibrated using logistic regression with restricted cubic splines. The super learner from the reduced model had the lowest average rank, i.e., the best performance, followed by the super learner from the reduced model that included eGFR. The super learner based on the full model including eGFR always performed worst. If the average rank difference between models was larger than the critical difference 1.5, the performance was significantly different at the 5% test-level using the Nemenyi post-hoc test, which adjusts for multiple testing.

Access	AUC	Moon (05% Cl)		Moon (05%/ Cl)	Prior Cooro	Moon (05% Cl)
Derivation	AUC	Mean [55 /6 Ci]	LUGLUSS	Mean [95 % Ci]	Biler Score	Mean [55 /6 Ci]
BACC	-+ ₊	0.89 [0.88, 0.91] 0.94 [0.92, 0.95]	+	0.27 [0.22, 0.31] 0.21 [0.16, 0.26]	_ *	0.08 [0.07, 0.09] 0.06 [0.05, 0.08]
Validation						
stenoCardia		0.94 [0.92, 0.96]		0.21 [0.05, 0.38] 0.13 [0.00, 0.32]		0.06 [0.04, 0.09] 0.04 [0.01, 0.06]
Generalization						
ADAPT-BSN	-	0.95 [0.94, 0.97] 0.98 [0.96, 0.99]		0.13 [0.06, 0.20] 0.10 [0.01, 0.18]		0.04 [0.03, 0.05] 0.03 [0.02, 0.04]
ADPs-CH	+	0.96 [0.94, 0.99]		0.16 [0.00, 0.44] 0.09 [0.00, 0.32]		0.04 [0.01, 0.07] 0.02 [0.00, 0.05]
DROP-ACS						
FASTEST						
High-STEACS						
LUND						
RAPID-CPU						
ROMI						
SAMIE	-	0.96 [0.94, 0.98]	_	0.10 [0.01, 0.19] 0.08 [0.00, 0.20]		0.03 [0.02, 0.04] 0.02 [0.01, 0.03]
SEIGE & SAFETY						
STOP-CP						
UTROPIA						
Summary	+	0.95 [0.94, 0.96] 0.98 [0.97, 0.99]	_ 	0.13 [0.08, 0.18] 0.10 [0.03, 0.16]		0.04 [0.03, 0.05] 0.03 [0.02, 0.03]
	0.8 0.9	1.0	0.0 0.1 0.2 0.3 0.4	0.5	0.0 (0.1
		Single hs-cTn m	easurement 🛛 🖶 Serial ha	s-cTn measurement		

Figure S5: Discrimination measures using the super-learner based on a single and on a serial hs-cTn measurement per assay

Architect Study AUC Mean [95% CI] LogLoss Mean [95% CI] Brier Score Mean [95% CI] Derivation 0.90 [0.88, 0.91] 0.26 [0.21, 0.30] 0.08 [0.07, 0.09] BACC 0.94 [0.93, 0.96] 0.19 [0.14, 0.24] 0.06 [0.04, 0.07] Validation 0.96 [0.95, 0.97] 0.18 [0.00, 0.36] 0.05 [0.04, 0.07] stenoCardia 0.98 [0.97, 0.99] 0.13 [0.01, 0.24] 0.04 [0.02, 0.05] Generalization 0.13 [0.04, 0.23] 0.04 [0.03, 0.05] 0.95 [0.93, 0.97] ADAPT-BSN 0.03 [0.02, 0.04] 0.97 [0.95, 0.99] 0.09 [0.03, 0.16] 0.06 [0.04, 0.07] 0.05 [0.03, 0.06] 0.19 [0.13, 0.26] 0.16 [0.08, 0.24] 0.95 [0.94, 0.96] ADPs-CH 0.97 [0.96, 0.98] DROP-ACS FASTEST 0.94 [0.92, 0.95] 0.20 [0.11, 0.29] 0.06 [0.05, 0.08] High-STEACS 0.97 [0.97, 0.98] 0.14 [0.03, 0.25] 0.04 [0.03, 0.06] LUND RAPID-CPU 0.87 [0.82, 0.91] 0.97 [0.95, 0.99] 0.17 [0.10, 0.23] 0.10 [0.00, 0.38] 0.05 [0.03, 0.06] 0.03 [0.02, 0.04] ROMI SAMIE 0.86 [0.82, 0.90] 0.23 [0.16, 0.30] 0.07 [0.05, 0.08] SEIGE & SAFETY 0.05 [0.04, 0.07] 0.95 [0.93, 0.96] 0.16 [0.00, 0.35] STOP-CP 0.85 [0.81, 0.88] 0.25 [0.20, 0.31] 0.07 [0.06, 0.09] UTROPIA 0.93 [0.90, 0.95] 0.18 [0.12, 0.24] 0.05 [0.04, 0.07] 0.06 [0.05, 0.07] 0.92 [0.89, 0.94] 0.20 [0.17, 0.23] Summary 0.96 [0.95, 0.98] 0.14 [0.11, 0.18] 0.04 [0.03, 0.05] 0.8 0.0 0.1 0.2 0.3 0.4 0.9 1.0 0.0 0.1

Single hs-cTn measurement

Atellica Study	AUC	Mean [95% CI]	LogLoss	Mean [95% CI]	Brier Score	Mean [95% CI]
Derivation						
BACC	++	0.91 [0.89, 0.92] 0.95 [0.93, 0.96]	_	0.25 [0.20, 0.30] 0.19 [0.14, 0.24]		0.08 [0.06, 0.09] 0.06 [0.04, 0.07]
Validation						
stenoCardia	-	0.97 [0.96, 0.98] 0.98 [0.97, 0.98]		0.16 [0.02, 0.30] 0.13 [0.02, 0.25]		0.05 [0.03, 0.06] 0.04 [0.02, 0.06]
Generalization						
ADAPT-BSN						
ADPs-CH						
DROP-ACS						
FASTEST						
High-STEACS	*	0.94 [0.93, 0.96] 0.97 [0.96, 0.98]	_	0.20 [0.10, 0.31] 0.15 [0.05, 0.25]		0.06 [0.04, 0.07] 0.05 [0.03, 0.06]
LUND						
RAPID-CPU						
ROMI						
SAMIE		0.94 [0.92, 0.97] 0.95 [0.92, 0.97]	-	0.11 [0.03, 0.19] 0.11 [0.05, 0.17]	-	0.03 [0.02, 0.04] 0.03 [0.02, 0.04]
SEIGE & SAFETY		0.87 [0.84, 0.89] 0.93 [0.91, 0.95]		0.22 [0.00, 0.54] 0.18 [0.04, 0.32]		0.07 [0.05, 0.08] 0.05 [0.04, 0.07]
STOP-CP						
UTROPIA						
Summary		0.93 [0.90, 0.97] 0.96 [0.94, 0.98]	-	0.15 [0.09, 0.21] 0.13 [0.08, 0.17]		0.05 [0.03, 0.07] 0.04 [0.03, 0.05]
0.	B 0.9	1.0 ■Single hs-cTn me	0.0 0.1 0.2 0.3 0.4 0.5 asurement Serial hs	5 -cTn measurement	0.0	0.1

AtellicaVTLi Study Generalization	AUC	Mean [95% CI]	LogLoss	Mean [95% CI]	Brier Score	Mean [95% CI]
SEIGE & SAFETY		0.86 [0.82, 0.89] 0.92 [0.90, 0.95]		0.22 [0.06, 0.38] 0.18 [0.09, 0.27]		0.06 [0.05, 0.08] 0.06 [0.04, 0.07]
	0.8 0.9	1.0	0.0 0.1 0.2 0.3	0.4	0.0	0.1

Single hs-cTn measurement

Elecsys Study	AUC	Mean [95% CI]	LogLoss	Mean [95% CI]	Brier Score	Mean [95% CI]
Derivation			5			
BACC	÷.	0.89 [0.87, 0.91] 0.96 [0.95, 0.97]		0.26 [0.22, 0.30] 0.16 [0.11, 0.22]	+*	0.08 [0.07, 0.09] 0.05 [0.04, 0.06]
Validation						
stenoCardia		0.96 [0.95, 0.97] 0.98 [0.97, 0.99]		0.18 [0.04, 0.32] 0.13 [0.01, 0.25]		0.06 [0.04, 0.07] 0.04 [0.02, 0.06]
Generalization						
ADAPT-BSN		0.91 [0.87, 0.96] 0.95 [0.91, 0.98]		0.19 [0.12, 0.27] 0.14 [0.06, 0.23]		0.05 [0.04, 0.07] 0.04 [0.02, 0.06]
ADPs-CH		0.91 [0.89, 0.93] 0.95 [0.94, 0.97]		0.25 [0.20, 0.30] 0.19 [0.13, 0.26]	-	0.07 [0.06, 0.09] 0.06 [0.04, 0.07]
DROP-ACS		0.80 [0.77, 0.84] 0.86 [0.84, 0.89]		0.30 [0.24, 0.35] 0.26 [0.16, 0.36]	-	0.09 [0.08, 0.10] 0.08 [0.07, 0.09]
FASTEST	+++	0.91 [0.88, 0.94] 0.92 [0.89, 0.95]		0.20 [0.12, 0.28] 0.20 [0.08, 0.32]		0.06 [0.04, 0.08] 0.06 [0.05, 0.08]
High-STEACS		0.88 [0.86, 0.91] 0.97 [0.96, 0.98]		0.25 [0.20, 0.31] 0.16 [0.07, 0.24]	-	0.08 [0.06, 0.09] 0.05 [0.03, 0.06]
LUND		0.93 [0.89, 0.96] 0.96 [0.94, 0.99]		0.14 [0.06, 0.22] 0.11 [0.02, 0.19]	-	0.04 [0.02, 0.05] 0.03 [0.01, 0.04]
RAPID-CPU	* .	0.90 [0.89, 0.91] 0.94 [0.93, 0.95]		0.25 [0.21, 0.29] 0.21 [0.16, 0.25]	-	0.08 [0.07, 0.08] 0.06 [0.06, 0.07]
ROMI		0.84 [0.78, 0.89] 0.93 [0.89, 0.96]		0.18 [0.12, 0.23] 0.13 [0.05, 0.21]	-	0.05 [0.04, 0.06] 0.04 [0.03, 0.05]
SAMIE						
SEIGE & SAFETY						
STOP-CP		0.88 [0.85, 0.90] 0.91 [0.88, 0.93]		0.25 [0.20, 0.31] 0.22 [0.15, 0.29]		0.08 [0.06, 0.09] 0.06 [0.05, 0.08]
UTROPIA						
Summary	++	0.89 [0.87, 0.92] 0.94 [0.92, 0.96]	++	0.23 [0.20, 0.26] 0.18 [0.15, 0.21]	+	0.06 [0.05, 0.07] 0.05 [0.04, 0.06]
	0.7 0.8 0.9 1	। .0 ■Single hs-cTn r	0.0 0.1 0.2 0.3 neasurement Eserial hs-c	0.4 Tn measurement	0.0 0.1	0.2

Pathfast Study Derivation	AUC	Mean [95% CI]	LogLoss	Mean [95% CI]	Brier Score	Mean [95% CI]
BACC	- - _+	0.91 [0.89, 0.93] 0.94 [0.93, 0.96]		0.25 [0.20, 0.29] 0.20 [0.15, 0.25]		0.07 [0.06, 0.09] 0.06 [0.05, 0.07]
Validation						
stenoCardia	+	0.95 [0.94, 0.97] 0.98 [0.97, 0.99]		0.18 [0.07, 0.29] 0.12 [0.00, 0.24]		0.05 [0.03, 0.07] 0.03 [0.01, 0.05]
	0.8 0.9 1	⊺ I.0 ■Single hs-c1	0.0 0.1 0.2 0 n measurement Serial hs	- .3 -cTn measurement	0.0	٦).1

Figure S6: Calibration plot for single and serial hs-cTn measurement per assay and for derivation and validation datasets Derivation — Validation

Predicted probabilities of myocardial infarction (x-axis) and observed probabilities of myocardial infarction (y-axis) obtained via smoothing techniques. The dashed line is the identity line (y = x), perfectly calibrated predictions would be at this line. In the validation cohort. probability estimates were calibrated using logistic regression with restricted cubic splines.

Figure S7: Calibration plot for single and serial hs-cTn measurement per assay and the generalization datasets Access

Uncalibrated — Resctricted cubic splines

Architect

- Uncalibrated - Resctricted cubic splines

Atellica

Predicted probabilities of myocardial infarction (x-axis) and observed probabilities of myocardial infarction (y-axis) obtained via smoothing techniques. The dashed line is the identity line (y = x), perfectly calibrated predictions would be at this line.

Figure S8: Diagnostic accuracy using the myocardial infarction probability as threshold

This figure displays the diagnostic performance measures (negative predictive value (NPV), positive predictive value (PPV), sensitivity, specificity, and proportion of individuals) using the myocardial infarction probability as threshold. Detailed diagnostic measures are displayed in Tables S7 and S8 for each hs-cTn assay. As an example, this figure is based on hs-cTnT concentrations using the Elecsys assay, as this assay had the highest availability. This figure is based on data from the validation cohort stenocardia as well as the generalization cohorts ADAPT-BSN, ADPs-CH, FASTEST, LUND, RAPID-CPU, SAMIE, SEIGE & SAFETY, STOP-CP and UTROPIA.

Figure S9: Scatterplot and diagnostic performance using Atellica VTLi

The left-most figure shows the scatterplot for the Atellica hs-cTn measurements versus the Atellica VTLi hscTn measurements together with the regression line obtained from total least squares (TLS) regression for 135 patients from BACC. Subjects from without myocardial infarction (MI) are displayed in blue, patients with MI are displayed in red. Calibration curves are shown for restricted cubic spline re-calibration (red line; red shaded area shows 95% confidence intervals) and no calibration (blue line; blue shaded area shows 95% confidence intervals) for the Atellica VTLi hs-cTn in SIEGE & Safety. The black dashed line shows the ideal relationship between observed MI probabilities (y-axis) and predicted MI probabilities (x-axis). In both cases, the rcs-calibrated (red) curves are closer to the black dotted line the uncalibrated (blue) curves.

Figure S10: Clinical use cases

14:58					
MI Probability					
1.9	9 %				
Save	Nev	w pt			
Hs-cTn Assay	Arch	itect 🗸			
First hs-cTn	9 n	g/L			
econd hs-cTn	5 n	g/L			
ime between hs-cTn	90 1	min			
ex	Female	Male			
lge	55 y	ears			
leart rate	70 k	pm			
ymptom onset < 3h	No	Yes			
ver smoker	No	Yes			
lyperlipoproteinemia	No	Yes			
amily history of CAD	No	Yes			

14:58		奈 ■
MI Pro	bability	
1.9	9 %	
Save	Nev	v pt
Hs-cTn Assay	Atel	lica 🔪
First hs-cTn	13 n	g/L
Second hs-cTn	6 ng	g/L
Time between hs-cTn	60 r	nin
Sex	Female	Male
Age	60 ye	ears
Heart rate	75 b	pm
Symptom onset < 3h	No	Yes
Ever smoker	No	Yes
Hyperlipoproteinemia	No	Yes
Family history of CAD	No	Yes
Ischemic ECG	No	Yes

14:58	-	
MI Pro	bability	
1.8	3 %	
Save	Nev	v pt
Hs-cTn Assay	Atellic	a VTLi 🗸
First hs-cTn	10 r	ig/L
Second hs-cTn	5 n	g/L
Time between hs-cTn	60 r	nin
Sex	Female	Male
Age	65 y	ears
Heart rate	75 k	opm
Symptom onset < 3h	No	Yes
Ever smoker	No	Yes
Hyperlipoproteinemia	No	Yes
Family history of CAD	No	Yes
Ischemic ECG	No	Yes

	babinty	
1.9	9 %	
Save	Nev	w pt
Hs-cTn Assay	Elec	csys 🗸
First hs-cTn	8 n	g/L
Second hs-cTn	5 n	g/L
Time between hs-cTn	60	min
Sex	Female	Male
Age	50 y	ears
Heart rate	70 8	opm
Symptom onset < 3h	No	Yes
Ever smoker	No	Yes
Hyperlipoproteinemia	No	Yes
Family history of CAD	No	Yes
Ischemic ECG	No	Yes

NAL D	L. L. Davis						
MI Pro	bability						
1.9	9 %						
Save	Net	w pt					
Hs-cTn Assay	Path	nfast 💊					
First hs-cTn	8 ng/L						
Second hs-cTn	5 ng/L						
Time between hs-cTn	90 min						
Sex	Female	Male					
Age	50 y	ears					
Heart rate	65 1	opm					
Symptom onset < 3h	No	Yes					
Ever smoker	No	Yes					
Hyperlipoproteinemia	No Yes						
Family history of CAD	No	Yes					
Ischemic ECG	No	Yes					

This figure illustrates the clinical application of the machine-learning algorithm to determine the individual probability of having an acute MI.

2. Supplemental Tables

Table S1: TRIPOD Checklist

Section/Topic			Checklist Item	Page
Title and abstract				
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	3
Introduction				
Background and	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	5
objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	5
Methods				
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	6-7
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	S5-10
	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	6
Participants	5b	D;V	Describe eligibility criteria for participants.	6, S5-10
	5c	D;V	Give details of treatments received, if relevant.	n/a
0.1	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	6
Outcome	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	n/a
Dradiatora	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	7, S11
Fredicions	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	n/a
Sample size	8	D;V	Explain how the study size was arrived at.	S19
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	S18-19
	10a	D	Describe how predictors were handled in the analyses.	S12-17
Statistical analysis	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	S12-17
methods	10c	V	For validation, describe how the predictions were calculated.	S12-17
	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	S12-17
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	S12-17
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	n/a
Development vs. validation	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	S5-10

Results				
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	Figure S1
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	Table 1, Tables S2-4
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	Tables S2-4
Madal davalapment	14a	D	Specify the number of participants and outcome events in each analysis.	Tables S2-4
woder development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	n/a
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	n/a
15b		D	Explain how to the use the prediction model.	S12-17
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	Table S7
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	n/a
Discussion				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	12-14
Internetation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	12-14
Interpretation	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	12-14
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	12-14
Other information				
Supplementary information	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	Supplem ent
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	16

	All Patients		Derivation Val		Validation		Global generalization		
		# missing		# missing		# missing	Total	# missing	(lowest – highest per cohort)
Sample size	27674	-	2575	-	1688	_	23411	_	1033 - 4938
Age (years)	61 [50, 73]	12	64 [51, 75]	0	63 [52, 72]	0	61 [50, 73]	12	51 [43, 61] - 72 [60, 81]
Sex (male) (%)	15451 (55.8)	8	1638 (63.6)	0	1108 (65.6)	0	12705 (54.3)	8	1178 (37.8) - 859 (60.5)
Heart rate (bpm)	76 [66, 88]	2315	77 [67, 88.5]	20	70 [62, 81]	15	76 [66, 88]	2280	70 [62, 81] - 88 [74, 103]
Systolic BP (mmHg)	143 [128, 160]	2581	147 [131, 163]	25	140 [129, 160]	11	143 [128, 160]	2545	130 [113, 147] - 150 [138, 165]
eGFR (mL/min for 1.73m ²)	82.9 [63.4, 96.9]	1344	76.9 [58.5, 92.3]	20	84.2 [69.0, 95.2]	6	83.4 [63.7, 97.4]	1318	65.3 [53.4, 83.0] - 94.3 [78.9, 104.9]
History of CAD (%)	8203 (29.8)	178	372 (33.9)	0	606 (36.9)	44	6725 (28.9)	134	63 (2.7) - 259 (19.5)
History of heart failure (%)	2588 (11.5)	5085	394 (15.3)	0	120 (7.5)	85	2074 (11.3)	5000	139 (13.5) - 647 (37.4)
History of atrial fibrillation (%)	1859 (13.0)	13351	395 (15.3)	1	162 (9.8)	39	1302 (12.9)	13311	213 (20.6) - 692 (84.6)
Hypertension (%)	16127 (59.0)	336	1681 (65.5)	7	1256 (74.4)	0	13190 (57.1)	329	82 (6.7) - 318 (24.2)
Hyperlipoproteinemia (%)	12837 (48.4)	1162	904 (35.1)	0	1236 (73.2)	0	10697 (48.1)	1162	691 (40.7) - 957 (70.9)
Diabetes (%)	5404 (19.8)	403	326 (12.8)	22	303 (18.2)	23	4775 (20.7)	358	262 (22.5) - 946 (66.9)
Ever smoker (%)	10796 (43.1)	2653	1187 (46.8)	36	865 (52.6)	44	8744 (42.0)	2573	280 (12.1) - 361 (34.9)
Family history of CAD (%)	8476 (40.0)	6491	478 (19.3)	95	540 (33.2)	62	7458 (43.7)	6334	460 (14.8) - 821 (63.2)
Ischaemic signs ECG (%)	4428 (18.4)	3607	520 (20.8)	69	872 (52.1)	15	3036 (15.3)	3523	20 (0.9) - 588 (36.1)
Symptom onset < 3h (%)	11122 (46.1)	3574	713 (29.4)	147	631 (37.4)	0	9778 (48.9)	3427	643 (27.5) - 2263 (98.1)
Time between serial samples (min)	80 [60, 155]	2152	60 [60, 63]	38	180 [162, 190]	50	90 [60, 148]	2064	60 [60, 60] - 204 [173, 264]
Final diagnosis of MI (%)	3249 (11.7)	0	368 (14.3)	0	283 (16.8)	0	2598 (11.1)	0	109 (5.5) - 519 (16.6)
30d incident all-cause death (%)	643 (2.7)	3964	74 (3.4)	389	38 (2.3)	30	531 (2.7)	3545	2 (0.1) - 7 (12.3)
30d incident MI (%)	1007 (4.8)	6708	24 (1.1)	389	47 (2.8)	30	936 (5.5)	6289	5 (0.3) - 433 (13.9)
Hs-cTnl Access- First meas. (ng/L)	3.5 [2.3, 8.3]	20728	5.3 [2.9, 15.8]	696	5.2 [2.3, 23.1]	1018	3.0 [2.3, 6.0]	19014	2.5 [2.3, 4.6] - 3.5 [2.3, 9.3]
Hs-cTnl Access - Second meas. (ng/L)	4.0 [2.3, 10.3]	20664	5.8 [3.0, 19.7]	239	7.2 [3.2, 38.6]	1213	3.0 [2.3, 6.5]	19212	2.6 [2.3, 4.9] - 4.0 [2.3, 8.0]
Hs-cTnl Architect- First meas. (ng/L)	4.5 [2.0, 14.0]	13419	5.7 [2.6, 16.1]	81	6.9 [3.5, 28.8]	90	4.0 [2.0, 12.0]	13248	2.3 [1.9, 4.4] - 7.0 [4.0, 21.0]
Hs-cTnl Architect - Second meas. (ng/L)	5.0 [2.2, 16.3]	13732	5.9 [2.6, 19.4]	21	7.8 [3.6, 35.8]	217	4.1 [2.0, 14.0]	13494	2.4 [1.9, 4.8] - 8.0 [4.0, 24.0]
Hs-cTnl Atellica - First meas. (ng/L)	5.3 [2.5, 17.4]	19342	5.7 [2.5, 19.9]	391	6.4 [3.0, 31.2]	197	4.8 [2.5, 14.6]	18754	3.5 [2.5, 8.5] - 10.7 [4.4, 29.1]
Hs-cTnl Atellica- Second meas. (ng/L)	6.4 [2.9, 22.0]	19841	6.2 [2.7, 23.9]	168	8.0 [3.5, 41.2]	281	6.0 [2.8, 18.8]	19392	4.5 [2.5, 11.2] - 11.9 [4.7, 32.6]
Hs-cTnl Atellica VTLi- First meas. (ng/L)	7.6 [4.1, 16.0]	26586	6.3 [3.8, 11.5]	2459	-	-	7.8 [4.1, 16.8]	22439	7.8 [4.1, 16.8]
Hs-cTnl Atellica VTLi- Second meas. (ng/L)	7.9 [4.1, 17.2]	26592	6.0 [3.8, 12.5]	2462	-	-	8.2 [4.2, 18.4]	22442	8.2 [4.2, 18.4]
Hs-cTnT Elecsys - First meas. (ng/L)	9.0 [5.0, 20.0]	7673	9.0 [5.0, 21.0]	14	9.2 [5.0, 20.3]	140	8.6 [5.0, 20.0]	7519	6.0 [4.0, 13.0] - 16.0 [8.0, 36.0]
Hs-cTnT Elecsys - Second meas. (ng/L)	9.0 [5.0, 22.0]	9148	9.0 [5.0, 23.0]	5	8.1 [4.1, 23.3]	162	8.8 [5.0, 22.0]	8981	3.0 [3.0, 12.0] - 18.0 [8.2, 42.0]
Hs-cTnl Pathfast- First meas. (ng/L)	4.0 [2.3, 12.4]	24428	3.7 [2.3, 12.2]	315	4.2 [2.3, 12.8]	702	-	-	
Hs-cTnl Pathfast- Second meas. (ng/L)	4.3 [2.3, 15.5]	24360	4.0 [2.3, 14.4]	124	5.1 [2.6, 20.3]	825	-	-	-

Table S2: Baseline characteristics for derivation, validation and generalization cohorts including information on missingness

Data are presented as median [Q1, Q3] or number (proportion). * VTLi measurements were performed in a separate population of patients recruited to the BACC study. Detailed characteristics of these patients is provided in Table S2. Abbreviations: BP = blood pressure, eGFR = estimated glomerular filtration rate, CAD = coronary artery disease, ECG = electrocardiogram, MI = myocardial infarction, hs-cTn = high-sensitivity cardiac troponin, meas. = measurement.

Table S3: Baseline characteristics for all generalization cohorts										
.	ADAPT-BSN	ADPs-CH	BACC VTI	DROP-ACS	FASTEST	High-STEACS	Lund			
Sample size	2315	3119	125	1420	1233	1750	1164			
Age (years)	51.0 [43.0, 61.0]	62.1 [53.0, 72.4]	57 [50, 72]	72.0 [60.0, 81.0]	64.0 [53.0, 73.0]	60.0 [51.0, 72.0]	63.0 [49.0, 74.0]			
Sex (male) (%)	1386 (59.9)	1178 (37.8)	73 (60.8)	859 (60.5)	677 (55.0)	1048 (59.9)	636 (54.6)			
Heart rate (bpm)	75.0 [65.0, 86.0]	70.0 [62.0, 81.0]	77 [64, 90]	79.0 [68.0, 91.0]	70.0 [61.0, 82.0]	75.0 [64.0, 87.0]	79.0 [70.0, 90.0]			
Systolic BP (mmHg)			142 [128	З,						
αGEP (ml /min for 1 73m ²)	136.0 [122.0, 150.0]	143.0 [128.0, 162.0]	164] 97.0 [69.7	148.0 [130.0, 167.0 1	0]145.0 [130.0, 163.0	0]137.0 [124.0, 153.0)]143.0 [128.0, 160.0]			
	94.3 [78.9, 104.9]	65.3 [53.4, 83.0]	99.0]	83.8 [62.4, 94.5]	86.7 [72.0, 96.9]	89.1 [74.7, 98.9]	83.8 [67.8, 95.8]			
History of CAD (%)	383 (16.5)	1122 (36.0)	38 (30.4)	393 (27.7)	384 (31.2)	647 (37.4)	291 (25.0)			
History of heart failure (%)	63 (2.7)	206 (6.6)	2 (6.2)	-	55 (4.5)	53 (3.2)	130 (11.2)			
History of atrial fibrillation (%)	201 (8.7)	-	5 (15.6)	215 (15.1)	82 (6.7)	-	186 (16.0)			
Hypertension (%)	1005 (43.4)	1708 (54.8)	21 (65.6)	911 (64.5)	546 (44.4)	691 (40.7)	504 (43.3)			
Hyperlipoproteinemia (%)	915 (44.7)	1767 (56.7)	29 (23.2)	946 (66.9)	378 (30.8)	687 (41.0)	262 (22.5)			
Diabetes (%)	280 (12.1)	477 (15.3)	-	397 (28.1)	162 (13.2)	252 (14.7)	162 (13.9)			
Ever smoker (%)	1413 (61.0)	460 (14.8)	49 (39.2)	740 (59.8)	624 (50.7)	990 (58.5)	656 (56.5)			
Family history of CAD (%)	945 (40.8)	1707 (54.8)	14 (13.1)	-	692 (84.6)	843 (51.8)	265 (23.1)			
Ischaemic signs ECG (%)	20 (0.9)	321 (10.3)	18 (14.9)	150 (11.2)	252 (20.9)	193 (11.3)	69 (6.0)			
Symptom onset < 3h (%)	2263 (98.1)	643 (27.5)	8 (21.6)	694 (60.4)	614 (50.8)	734 (46.4)	391 (34.2)			
Time between serial samples (min)	135.0 [125.0, 150.0]	120.0 [90.0, 120.0]	66 (60, 80)	60.0 [60.0, 60.0]	71.0 [62.0, 105.0]	125.0 [67.0, 167.0]	60.0 [60.0, 60.0]			
Final diagnosis of MI (%)	165 (7.1)	519 (16.6)	5 (4.0)	167 (11.8)	128 (10.4)	230 (13.1)	81 (7.0)			
30d incident all-cause death (%)	2 (0.1)	108 (3.5)	-	-	3 (0.2)	44 (2.5)	6 (0.5)			
30d incident MI (%)	114 (4.9)	433 (13.9)	-	-	8 (0.6)	5 (0.3)	11 (0.9)			
Hs-cTnl Access- First measurement (ng/L)	2.5 [2.3, 4.6]	3.5 [2.3, 9.3]	-	-	-	-	-			
Hs-cTnl Access - Second measurement (ng/L)	2.6 [2.3, 4.9]	3.5 [2.3, 8.9]	-	-	-	-	-			
Hs-cTnl Architect- First measurement (ng/L)	2.3 [1.9, 4.4]	4.3 [2.2, 13.7]	-	-	4.3 [2.0, 8.8]	3.0 [1.9, 9.0]	-			
Hs-cTnl Architect - Second measurement (ng/L)	2.4 [1.9, 4.8]	4.6 [2.3, 15.4]	-	-	4.0 [2.0, 9.8]	3.0 [1.9, 12.0]	-			
Hs-cTnl Atellica - First measurement (ng/L)	-	-	4.0 [2.5, 13.0	D]_	-	4.7 [2.5, 14.6]	-			
Hs-cTnl Atellica- Second measurement (ng/L)	-	-	4.0 [2.5, 13.0	D]_	-	5.0 [2.5, 17.9]	-			
Hs-cTnl Atellica VTLi- First measurement (ng/L)	-	-	6.3 [3.8, 11.	5]_	-	-	-			
Hs-cTnl Atellica VTLi- Second measurement (ng/L)	-	-	6.0 [3.8, 12.5	5]_	-	-	-			
Hs-cTnT Elecsys - First measurement (ng/L)	6.7 [4.3, 11.8]	7.9 [5.0, 18.4]	-	16.0 [8.0, 36.0]	7.0 [5.0, 14.0]	6.0 [4.0, 13.0]	7.0 [4.0, 15.0]			
Hs-cTnT Elecsys - Second measurement (ng/L)	6.5 [4.1, 11.6]	7.5 [5.0, 18.1]	-	18.0 [8.2, 42.0]	7.0 [5.0, 15.0]	3.0 [3.0, 12.0]	7.0 [4.0, 16.0]			

Data are presented as median [Q1, Q3] or number (proportion). Abbreviations: BP = blood pressure, eGFR = estimated glomerular filtration rate, CAD = coronary artery disease, ECG = electrocardiogram, MI = myocardial infarction, hs-cTn = high-sensitivity cardiac troponin.

Table S3: Baseline characteristics for all generalization	cohorts (continued)	BOW	0.4.44			
	RAPID-CPU	ROMI	SAMIE	SEIGE, SAFETY	STOP-CP	UTROPIA
Sample size	4938	1366	1985	1033	1457	1631
Age (years)	64.0 [51.0, 77.0]	68.0 [55.0, 80.0]	56.0 [46.0, 68.0]	58.0 [48.0, 69.0]	57.5 [49.1, 66.0]	57.0 [48.0, 67.0]
Sex (male) (%)	2867 (58.1)	650 (47.7)	1091 (55.0)	621 (60.1)	781 (53.6)	911 (55.9)
Heart rate (bpm)	77.0 [67.0, 87.0]	-	75.0 [66.0, 86.5]	88.0 [75.0, 102.0]	76.0 [66.0, 89.0]	88.0 [74.0, 103.0]
Systolic BP (mmHg)	150.0 [138.0, 165.0]	-	135.0 [123.0, 152.0]	134.0 [118.0, 152.0]	130.0 [113.0, 147.0]	142.0 [125.0, 158.0]
eGFR (mL/min for 1.73m²)	84.1 [64.8, 98.2]	76.9 [52.0, 91.2]	88.6 [73.1, 100.6]	72.6 [47.6, 93.0]	82.2 [63.3, 95.6]	79.3 [53.6, 98.0]
History of CAD (%)	1795 (36.4)	357 (27.2)	477 (24.3)	139 (13.5)	472 (32.4)	265 (16.5)
History of heart failure (%)	909 (18.4)	259 (19.5)	-	168 (16.3)	-	231 (14.3)
History of atrial fibrillation (%)	-	318 (24.2)	-	118 (11.4)	-	182 (11.2)
Hypertension (%)	3241 (68.8)	957 (70.9)	938 (47.6)	644 (62.3)	971 (66.6)	1074 (66.3)
Hyperlipoproteinemia (%)	2196 (52.1)	802 (60.3)	901 (46.0)	449 (43.5)	698 (47.9)	696 (43.1)
Diabetes (%)	1019 (21.8)	405 (30.4)	350 (17.6)	361 (34.9)	414 (28.4)	496 (30.7)
Ever smoker (%)	1010 (24.2)	821 (63.2)	444 (22.4)	617 (59.7)	-	969 (60.1)
Family history of CAD (%)	1236 (31.0)	714 (58.9)	843 (46.3)	213 (20.6)	-	-
Ischaemic signs ECG (%)	1319 (26.7)	-	-	35 (3.4)	89 (6.1)	588 (36.1)
Symptom onset < 3h (%)	2136 (43.3)	325 (45.8)	659 (52.2)	285 (27.6)	515 (35.5)	519 (60.3)
Time between serial samples (min)	60.0 [60.0. 60.0]	181.2 [178.2. 190.2]	185.0 [169.0. 198.0]	125.0 [115.8. 140.0]	54.0 [43.0. 65.0]	204.0 [172.8. 263.7]
Final diagnosis of MI (%)	674 (13.6)	81 (5.9)	109 (5.5)	98 (9.5)	176 (12.1)	170 (10.4)
30d incident all-cause death (%)	292 (6.0)	46 (3.4)	-	16 (1.6)	7 (0.5)	7 (0.4)
30d incident MI (%)	127 (2.9)	221 (16.2)	-	3 (3.3)	-	14 (0.9)
Hs-cTnl Access- First measurement (ng/L)	-	-	3.0 [2.3, 6.0]	-	-	-
Hs-cTnl Access - Second measurement (ng/L)	-	-	40[2380]	_	_	-
Hs-cTnl Architect- First measurement (ng/L)	-	5.1 [2.0, 17.0]	-	7.0 [4.0. 21.0]	-	5.0 [1.9, 15.9]
Hs-cTnl Architect - Second measurement (ng/L)	-	60[30 200]	_	80[40 240]	_	6 4 [2 5 21 0]
Hs-cTnl Atellica - First measurement (ng/L)	-	-	3 5 [2 5 8 5]	10 7 [4 4 29 1]	_	-
Hs-cTnl Atellica- Second measurement (ng/L)	-	-	4 5 [2 5 11 2]	11 9 [4 7 32 6]	_	_
Hs-cTnl Atellica VTLi- First measurement (ng/L)	-	-	-	7 8 [4 1 16 8]	_	-
Hs-cTnl Atellica VTLi- Second measurement (ng/L)	-	-	-	8.2 [4.2. 18.4]	-	-
Hs-cTnT Elecsys - First measurement (ng/L)	9.0 [5.0, 21.0]	12.0 [6.0, 26.8]	-	-	9.2 [4.9. 21.1]	-
Hs-cTnT Elecsys - Second measurement (ng/L)	10.0 [6.0, 25.0]	12.0 [6.0, 26.0]	-	-	9.1 [5.0, 21.3]	-

Data are presented as median [Q1, Q3] or number (proportion). Abbreviations: BP = blood pressure, eGFR = estimated glomerular filtration rate, CAD = coronary artery disease, ECG = electrocardiogram, MI = myocardial infarction, hs-cTn = high-sensitivity cardiac troponin.

Table S4: Baseline characteristics for all generalization cohorts stratified by MI diagnosis

-	ADA	PT-BSN	A	DPs-CH	DR	OP-ACS	FASTEST		
	No MI	МІ	No MI	MI	No MI	МІ	No MI	МІ	
Sample size	2150	165	2600	519	1253	167	1105	128	
Age (years)	51.0 [42.0, 60.0]	64.0 [54.0, 76.0]	61.0 [52.0, 71.0]	69.2 [59.0, 77.5]	73.0 [60.0, 81.0]	69.0 [60.0, 78.0]	63.0 [53.0, 72.0]	70.0 [60.8, 78.0]	
Sex (male) (%)	1281 (59.6)	105 (63.6)	1044 (40.2)	134 (25.8)	728 (58.1)	131 (78.4)	587 (53.3)	90 (70.3)	
Heart rate (bpm)	75.0 [65.0, 85.0]	80.0 [68.0, 93.2]	70.0 [62.0, 81.0]	72.0 [62.0, 82.0]	79.0 [68.0, 92.0]	80.0 [69.0, 90.0]	70.0 [61.0, 81.0]	73.0 [61.0, 88.0]	
Systolic BP (mmHg)	135.0 [122.0 150.0]	0,139.0 [120.0, 155.0)] 142.0 [128.0 162.0]	0,146.0 [129.0, 166.0]	146.0 [130.0, 166.0	0]153.0 [139.2, 174.0] 145.0 [130.0 162.0]	0,150.0 [134.8, 170.0]	
eGFR (mL/min for 1.73m²)	95.0 [80.9, 105.3]	76.8 [56.6, 93.8]	67.4 [55.5, 86.0]	57.0 [45.9, 69.4]	83.9 [62.9, 94.6]	82.0 [60.0, 93.6]	87.1 [73.2, 97.2]	81.4 [61.0, 95.0]	
History of CAD (%)	317 (14.7)	66 (40.0)	903 (34.8)	219 (42.2)	326 (26.1)	67 (40.1)	340 (30.8)	44 (34.4)	
History of heart failure (%)	50 (2.3)	13 (7.9)	166 (6.4)	40 (7.7)	-	0 (NaN)	51 (4.6)	4 (3.1)	
History of atrial fibrillation (%)	168 (7.8)	33 (20.0)	-	0 (NaN)	203 (16.2)	12 (7.2)	68 (6.2)	14 (10.9)	
Hypertension (%)	903 (42.0)	102 (61.8)	1390 (53.5)	318 (61.3)	783 (62.8)	128 (77.1)	474 (43.0)	72 (56.2)	
Hyperlipoproteinemia (%)	830 (43.8)	85 (56.7)	1462 (56.3)	305 (58.8)	808 (64.7)	138 (83.6)	334 (30.3)	44 (34.6)	
Diabetes (%)	245 (11.4)	35 (21.2)	372 (14.3)	105 (20.2)	329 (26.4)	68 (41.0)	140 (12.7)	22 (17.2)	
Ever smoker (%)	1307 (60.8)	106 (64.2)	375 (14.4)	85 (16.4)	628 (58.5)	112 (68.7)	554 (50.3)	70 (54.7)	
Family history of CAD (%)	868 (40.4)	77 (46.7)	1407 (54.2)	300 (57.8)	-	0 (NaN)	615 (84.6)	77 (84.6)	
Ischaemic signs ECG (%)	16 (0.7)	4 (2.4)	166 (6.4)	155 (29.9)	110 (9.3)	40 (25.8)	206 (19.1)	46 (36.5)	
Symptom onset < 3h (%)	2102 (98.1)	161 (97.6)	560 (28.9)	83 (20.8)	623 (60.3)	71 (61.7)	542 (50.0)	72 (58.5)	
Time between serial samples (min)	135.0 [125.0 150.0]	0,135.0 [125.0, 155.0)] 120.0 [90.0 120.0]	0,120.0 [102.2, 120.0]	60.0 [60.0, 60.0]	60.0 [60.0, 60.0]	70.0 [61.0, 95.0]	90.0 [64.8, 145.2]	
Final diagnosis of MI (%)	0 (0.0)	165 (100.0)	0 (0.0)	519 (100.0)	0 (0.0)	167 (100.0)	0 (0.0)	128 (100.0)	
30d incident all-cause death (%)	0 (0.0)	2 (1.2)	58 (2.2)	50 (9.6)	-	0 (NaN)	1 (0.1)	2 (1.6)	
30d incident MI (%)	1 (0.0)	113 (68.5)	277 (10.7)	156 (30.1)	-	0 (NaN)	3 (0.3)	5 (3.9)	
Hs-cTnl Access- First measurement (ng/L)	2.4 [2.3, 4.0]	29.7 [14.8, 148.5]	2.7 [2.3, 5.3]	112.0 [41.7, 410.5]	-	-	-	-	
Hs-cTnl Access - Second measurement (ng/L)	2.4 [2.3, 4.0]	64.1 [28.9, 355.1]	2.8 [2.3, 5.1]	192.3 [66.5, 891.4]	-	-	-	-	
Hs-cTnl Architect- First measurement (ng/L)	2.1 [1.9, 3.7]	40.5 [15.2, 225.4]	3.5 [2.0, 6.8]	109.2 [40.2, 641.8]	-	-	3.4 [2.0, 6.9]	91.5 [25.5, 582.0]	
Hs-cTnl Architect - Second measurement (ng/L)	2.2 [1.9, 4.0]	75.3 [31.5, 366.4]	3.6 [2.1, 7.2]	212.4 [64.3, 1091.7]	-	-	3.3 [2.0, 7.4]	81.0 [39.0, 1635.0]	
Hs-cTnl Atellica - First measurement (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnl Atellica- Second measurement (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnl Atellica VTLi- First measurement (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnl Atellica VTLi- Second measurement (ng/L	_) -	-	-	-	-	-	-	-	
Hs-cTnT Elecsys - First measurement (ng/L)	6.2 [4.1, 9.5]	36.1 [21.4, 101.6]	6.3 [5.0, 11.2]	53.0 [26.5, 151.1]	13.5 [7.0, 30.0]	45.0 [21.5, 181.5]	6.0 [5.0, 11.0]	37.0 [20.5, 91.0]	
Hs-cTnT Elecsys - Second measurement (ng/L)	5.9 [4.0, 9.4]	51.8 [27.6, 129.3]	6.1 [5.0, 10.6]	65.6 [32.3, 199.1]	15.0 [7.8, 33.0]	68.0 [28.5, 233.0]	6.0 [5.0, 11.0]	36.0 [24.0, 114.0]	
Data are presented as median [01, 03] or number	ar (proportion) Ab	breviations: BP - b	lood pressure eG	ER - estimated alone	rular filtration rate	CAD = coronany and	any disease ECC	-	

Data are presented as median [Q1, Q3] or number (proportion). Abbreviations: BP = blood pressure, eGFR = estimated glomerular filtration rate, CAD = coronary artery disease, ECG = electrocardiogram, MI = myocardial infarction hs-cTn = high-sensitivity cardiac troponin.

Table S4: Baseline characteristics for all generalization cohorts stratified by MI diagnosis (continued)

-	Hig	h-STEACS		Lund	RAF	PID-CPU	ROMI		
	No MI	MI	No MI	MI	No MI	МІ	No MI	МІ	
Sample size	1520	230	1083	81	4264	674	1285	81	
Age (years)	59.0 [51.0, 70.0]	68.0 [58.0, 79.0]	63.0 [48.0, 73.0]	69.0 [61.0, 76.0]	63.0 [49.0, 76.0]	74.0 [62.0, 81.0]	67.0 [55.0, 80.0]	75.0 [58.0, 82.0]	
Sex (male) (%)	896 (58.9)	152 (66.1)	583 (53.8)	53 (65.4)	2407 (56.4)	460 (68.2)	606 (47.2)	44 (54.3)	
Heart rate (bpm)	75.0 [65.0, 87.0]	71.0 [62.0, 84.0]	79.0 [70.0, 90.0]	76.0 [67.0, 90.0]	76.0 [66.0, 86.0]	80.0 [70.0, 93.8]	-	-	
Systolic BP (mmHg)	137.0 [124.2, 152.0)] 138.0 [124.0, 153.0]	143.0 [128.0, 160.	0]148.0 [130.0, 175.0] 150.0 [138.0, 164.	0]152.0 [139.0, 166.0] -	-	
eGFR (mL/min for 1.73m²)	89.9 [76.0, 99.2]	84.5 [63.1, 95.4]	84.8 [68.4, 96.4]	73.8 [53.1, 88.8]	85.6 [67.5, 99.5]	72.8 [50.2, 88.5]	77.2 [52.3, 91.2]	69.3 [50.0, 88.0]	
History of CAD (%)	555 (36.9)	92 (40.9)	259 (23.9)	32 (39.5)	1477 (34.7)	318 (47.2)	334 (26.9)	23 (31.1)	
History of heart failure (%)	50 (3.4)	3 (1.4)	118 (10.9)	12 (14.8)	744 (17.4)	165 (24.5)	232 (18.6)	27 (35.5)	
History of atrial fibrillation (%)	-	0 (NaN)	171 (15.8)	15 (18.5)	-	0 (NaN)	295 (23.8)	23 (30.3)	
Hypertension (%)	579 (39.3)	112 (50.0)	452 (41.7)	52 (64.2)	2731 (66.9)	510 (80.7)	894 (70.4)	63 (78.8)	
Hyperlipoproteinemia (%)	590 (40.5)	97 (44.1)	234 (21.6)	28 (34.6)	1828 (50.1)	368 (65.0)	747 (59.7)	55 (71.4)	
Diabetes (%)	208 (13.9)	44 (19.6)	133 (12.3)	29 (35.8)	807 (20.0)	212 (33.4)	377 (30.0)	28 (36.8)	
Ever smoker (%)	845 (57.4)	145 (65.9)	599 (55.5)	57 (70.4)	871 (24.1)	139 (25.2)	767 (62.6)	54 (73.0)	
Family history of CAD (%)	730 (51.3)	113 (54.9)	245 (22.9)	20 (25.0)	1074 (30.9)	162 (31.7)	672 (58.8)	42 (60.9)	
Ischaemic signs ECG (%)	126 (8.4)	67 (30.3)	39 (3.7)	30 (37.5)	1027 (24.1)	292 (43.3)	-	0 (NaN)	
Symptom onset < 3h (%)	634 (46.1)	100 (48.3)	356 (33.5)	35 (43.8)	1780 (41.7)	356 (52.8)	297 (44.8)	28 (59.6)	
Time between serial samples (min)	121.0 [65.0, 162.2]	149.0 [103.0, 194.5]	60.0 [60.0, 60.0]	60.0 [60.0, 60.0]	60.0 [60.0, 60.0]	60.0 [60.0, 60.0]	181.2 [177.0, 190.]	2] 184.8 [180.0, 197.2]	
Final diagnosis of MI (%)	0 (0.0)	230 (100.0)	0 (0.0)	81 (100.0)	0 (0.0)	674 (100.0)	0 (0.0)	81 (100.0)	
30d incident all-cause death (%)	26 (1.7)	18 (7.8)	5 (0.5)	1 (1.2)	193 (4.6)	99 (14.8)	39 (3.0)	7 (8.6)	
30d incident MI (%)	1 (0.1)	4 (1.7)	7 (0.6)	4 (4.9)	80 (2.1)	47 (7.6)	208 (16.2)	13 (16.0)	
Hs-cTnl Access- First meas. (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnl Access - Second meas. (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnl Architect- First meas. (ng/L)	2.0 [1.9, 5.0]	74.0 [24.0, 418.0]	-	-	-	-	5.0 [2.0, 14.5]	69.0 [20.5, 204.5]	
Hs-cTnl Architect - Second meas. (ng/L)	3.0 [1.9, 6.0]	186.0 [61.0, 946.0]	-	-	-	-	5.0 [2.1, 16.0]	323.5 [102.5, 814.0]	
Hs-cTnl Atellica - First meas. (ng/L)	3.8 [2.5, 8.1]	127.6 [51.4, 682.6]	-	-	-	-	-	-	
Hs-cTnl Atellica- Second meas. (ng/L)	4.2 [2.5, 8.8]	311.5 [109.9, 1281.3]	-	-	-	-	-	-	
Hs-cTnl Atellica VTLi- First meas. (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnl Atellica VTLi- Second meas. (ng/L)	-	-	-	-	-	-	-	-	
Hs-cTnT Elecsys - First meas. (ng/L)	5.0 [4.0, 10.0]	34.0 [17.0, 97.0]	6.0 [4.0, 13.0]	73.0 [24.0, 136.0]	8.0 [5.0, 15.0]	57.0 [24.0, 148.8]	11.0 [6.0, 25.0]	50.0 [27.0, 90.0]	
Hs-cTnT Elecsys - Second meas. (ng/L)	3.0 [3.0, 6.0]	186.0 [61.0, 946.0]	6.0 [4.0, 13.0]	79.0 [31.0, 170.0]	9.0 [5.0, 16.0]	78.0 [39.0, 193.0]	11.0 [6.0, 23.0]	96.0 [57.5, 198.0]	

Data are presented as median [Q1, Q3] or number (proportion). Abbreviations: BP = blood pressure, eGFR = estimated glomerular filtration rate, CAD = coronary artery disease, ECG = electrocardiogram, MI = myocardial infarction hs-cTn = high-sensitivity cardiac troponin, meas. = measurement.

Table S4: Baseline characteristics for all generalization cohorts stratified by MI diagnosis (continued)

	S	AMIE	SEIGE	, SAFETY	STO	OP-CP	UTROPIA		
	No MI	МІ	No MI	МІ	No MI	MI	No MI	МІ	
Sample size	1876	109	935	98	1281	176	1461	170	
Age (years)	56.0 [45.0, 67.0]	68.0 [57.0, 77.0]	58.0 [48.0, 69.0]	58.0 [50.0, 67.8]	56.7 [48.7, 65.0]	62.4 [53.6, 70.6]	56.0 [47.0, 66.0]	60.0 [51.2, 70.5]	
Sex (male) (%)	1016 (54.2)	75 (68.8)	560 (59.9)	61 (62.2)	660 (51.5)	121 (68.8)	826 (56.5)	85 (50.0)	
Heart rate (bpm)	75.0 [66.0, 86.0]	79.0 [67.0, 91.0]	87.0 [74.0, 101.0]	96.5 [80.2, 115.0]	76.0 [66.0, 88.0]	78.0 [66.0, 89.8]	87.0 [74.0, 102.0]	95.0 [76.0, 115.0]	
Systolic BP (mmHg)	135.0 [123.0 152.0]	,142.0 [123.0, 156.0]	133.0 [117.8 151.0]	,139.0 [121.8, 157.8]	130.0 [113.0 147.0]	,130.5 [117.0, 145.5]	141.0 [124.0 157.0]	,150.0 [126.0, 173.0]	
eGFR (mL/min for 1.73m²)	89.6 [74.2, 101.3]	74.6 [61.1, 88.4]	73.4 [49.3, 93.4]	58.8 [31.6, 84.2]	83.4 [65.3, 97.0]	73.5 [46.7, 88.8]	81.2 [55.3, 99.9]	61.9 [39.2, 85.0]	
History of CAD (%)	429 (23.1)	48 (45.3)	110 (11.8)	29 (29.6)	383 (29.9)	89 (50.6)	225 (15.6)	40 (24.1)	
History of heart failure (%)	-	0 (NaN)	140 (15.0)	28 (28.6)	-	0 (NaN)	201 (13.9)	30 (18.0)	
History of atrial fibrillation (%)	-	0 (NaN)	101 (10.8)	17 (17.3)	-	0 (NaN)	152 (10.5)	30 (18.0)	
Hypertension (%)	865 (46.4)	73 (67.0)	576 (61.6)	68 (69.4)	837 (65.3)	134 (76.1)	947 (65.2)	127 (75.6)	
Hyperlipoproteinemia (%)	834 (45.1)	67 (62.6)	392 (41.9)	57 (58.2)	597 (46.6)	101 (57.4)	612 (42.3)	84 (50.3)	
Diabetes (%)	315 (16.8)	35 (32.1)	323 (34.5)	38 (38.8)	347 (27.1)	67 (38.1)	436 (30.1)	60 (35.7)	
Ever smoker (%)	421 (22.5)	23 (21.1)	555 (59.4)	62 (63.3)	-	0 (NaN)	866 (60.1)	103 (60.6)	
Family history of CAD (%)	804 (46.7)	39 (39.0)	191 (20.4)	22 (22.4)	-	0 (NaN)	-	0 (NaN)	
Ischaemic signs ECG (%)	-	0 (NaN)	22 (2.4)	13 (13.3)	67 (5.2)	22 (12.5)	480 (32.9)	108 (63.5)	
Symptom onset < 3h (%)	621 (52.2)	38 (52.1)	256 (27.4)	29 (29.6)	447 (35.1)	68 (38.9)	459 (60.5)	60 (58.8)	
Time between serial samples (min)	185.0 [167.0 198.8]	,181.0 [176.0, 195.0]	125.0 [115.0 140.0]	,125.0 [120.0, 140.8]	54.0 [42.8, 64.2]	54.0 [43.0, 65.0]	205.2 [172.8 262.3]	8,200.1 [169.3, 268.7]	
Final diagnosis of MI (%)	0 (0.0)	109 (100.0)	0 (0.0)	98 (100.0)	0 (0.0)	176 (100.0)	0 (0.0)	170 (100.0)	
30d incident all-cause death (%)	-	0 (NaN)	13 (1.4)	3 (3.3)	2 (0.2)	5 (2.8)	5 (0.4)	2 (1.2)	
30d incident MI (%)	-	0 (NaN)	3 (3.8)	0 (0.0)	-	0 (NaN)	11 (0.8)	3 (1.8)	
Hs-cTnl Access- First measurement (ng/L)	3.0 [2.3, 6.0]	63.0 [25.0, 297.0]	-	-	-	-	-	-	
Hs-cTnl Access - Second measurement (ng/L)	4.0 [2.3, 6.0]	155.0 [37.5, 644.0]	-	-	-	-	-	-	
Hs-cTnl Architect- First measurement (ng/L)	-	-	6.0 [4.0, 16.8]	67.0 [24.5, 176.0]	-	-	4.1 [1.9, 11.4]	42.7 [17.3, 128.4]	
Hs-cTnl Architect - Second measurement (ng/L)	-	-	7.0 [4.0, 17.0]	96.0 [42.0, 349.8]	-	-	5.2 [2.3, 13.7]	116.2 [44.0, 578.3]	
Hs-cTnl Atellica - First measurement (ng/L)	3.3 [2.5, 7.1]	99.4 [29.7, 416.1]	8.9 [4.1, 22.7]	79.3 [36.3, 241.4]	-	-	-	-	
Hs-cTnl Atellica- Second measurement (ng/L)	4.2 [2.5, 8.7]	242.5 [57.1, 959.4]	9.8 [4.3, 22.3]	126.7 [58.3, 499.8]	-	-	-	-	
Hs-cTnl Atellica VTLi- First measurement (ng/L)	-	-	7.2 [4.0, 13.8]	36.9 [18.6, 118.2]	-	-	-	-	
Hs-cTnl Atellica VTLi- Second measuremen (ng/L)	t-	-	7.2 [3.9, 14.2]	64.2 [28.4, 184.0]	-	-	-	-	
Hs-cTnT Elecsys - First measurement (ng/L)	-	-	-	-	8.0 [4.6, 15.5]	52.9 [28.4, 109.4]	-	-	
Hs-cTnT Elecsys - Second measurement (ng/L)	-	-	-	-	7.8 [4.8, 15.2]	56.3 [32.0, 122.5]	-	-	

Data are presented as median [Q1, Q3] or number (proportion). Abbreviations: BP = blood pressure, eGFR = estimated glomerular filtration rate, CAD = coronary artery disease, ECG = electrocardiogram, MI = myocardial infarction hs-cTn = high-sensitivity cardiac troponin.

	ADAPT-BSN	ADPs-CH	BACC	BACC VTLi	FASTEST	High- STEACS	Lund	RAPID-CPU	ROMI	SAMIE	SEIGE, SAFETY	stenoCardia	STOP-CP	UTROPIA
Sample size	2315	3119	2575	125	1233	1750	1164	4938	1366	1985	1033	1688	1457	1631
Sex (male)	N:1386 %:59.9	N:1178 %:37.8	N:1638 %:63.6	N:73 %:60.8	N:677 %:55.0	N:1048 %:59.9	N:636 %:54.6	N:2867 %:58.1	N:650 %:47.7	N:1091 %:55.0	N:621 %:60.1	N:1108 %:65.6	N:781 %:53.6	N:911 %:55.9
Age (years)	Mean:52.6 Standard deviation:14. 0 Skewness:0. 4 Kurtosis:2.9 Q ₁ :43.0 Q ₂ :51.0 Q ₃ :61.0	Mean:62.6 Standard deviation:12. 9 Skewness:0. 0 Kurtosis:2.4 Q ₁ :53.0 Q ₂ :62.1 Q ₃ :72.4	Mean:62.7 Standard deviation:15. 6 Skewness:- 0.4 Kurtosis:2.5 Q ₁ :51.0 Q ₂ :64.0 Q ₃ :75.0	Mean:58.9 Standard deviation:17. 8 Skewness:- 0.2 Kurtosis:2.5 Q ₁ :49.8 Q ₂ :57.0 Q ₃ :72.2	Mean:63.1 Standard deviation:14. 2 Skewness:- 0.2 Kurtosis:2.7 Q ₁ :53.0 Q ₂ :64.0 Q ₃ :73.0	Mean:61.1 Standard deviation:14. 0 Skewness:0. 0 Kurtosis:2.5 Q ₁ :51.0 Q ₂ :60.0 Q ₃ :72.0	Mean:60.5 Standard deviation:17. 5 Skewness:- 0.4 Kurtosis:2.5 Q ₁ :49.0 Q ₂ :63.0 Q ₃ :74.0	Mean:62.6 Standard deviation:17. 1 Skewness:- 0.5 Kurtosis:2.5 Q ₁ :51.0 Q ₂ :64.0 Q ₃ :77.0	Mean:66.2 Standard deviation:16. 8 Skewness:- 0.5 Kurtosis:2.6 Q ₁ :55.0 Q ₂ :68.0 Q ₃ :80.0	Mean:56.2 Standard deviation:15. 6 Skewness:- 0.1 Kurtosis:2.5 Q ₁ :46.0 Q ₂ :56.0 Q ₃ :68.0	Mean:58.2 Standard deviation:15. 9 Skewness:- 0.1 Kurtosis:2.7 Q ₁ :48.0 Q ₂ :58.0 Q ₃ :69.0	Mean:61.4 Standard deviation:13. 6 Skewness:- 0.5 Kurtosis:2.8 Q ₁ :52.0 Q ₂ :63.0 Q ₃ :72.0	Mean:57.6 Standard deviation:12. 8 Skewness:0. 0 Kurtosis:2.9 Q ₁ :49.1 Q ₂ :57.5 Q ₃ :66.0	Mean:57.5 Standard deviation:15.3 Skewness:0.1 Kurtosis:2.9 Q1:48.0 Q2:57.0 Q3:67.0
Heart rate (bpm)	Mean:77.3 Standard deviation:17. 2 Skewness:1. 4 Kurtosis:7.9 Q1:65.0 Q2:75.0 Q3:86.0	Mean:72.7 Standard deviation:16. 5 Skewness:1. 4 Kurtosis:7.6 Q1:62.0 Q2:70.0 Q3:81.0	Mean:80.2 Standard deviation:19. 7 Skewness:1. 4 Kurtosis:6.4 Q1:67.0 Q2:77.0 Q3:88.5	Mean:79.1 Standard deviation:19. 4 Skewness:1. 6 Kurtosis:7.7 Q1:64.0 Q2:77.0 Q3:90.0	Mean:73.1 Standard deviation:17. 1 Skewness:1. 5 Kurtosis:7.1 Q1:61.0 Q2:70.0 Q3:82.0	Mean:77.0 Standard deviation:17. 6 Skewness:1. 2 Kurtosis:6.8 Q1:64.0 Q2:75.0 Q3:87.0	Mean:81.5 Standard deviation:17. 8 Skewness:1. 1 Kurtosis:5.4 Q ₁ :70.0 Q ₂ :79.0 Q ₃ :90.0	Mean:78.9 Standard deviation:18. 5 Skewness:1. 4 Kurtosis:6.5 Q ₁ :67.0 Q ₂ :77.0 Q ₃ :87.0	-	Mean:77.9 Standard deviation:17. 3 Skewness:1. 3 Kurtosis:6.0 Q1:66.0 Q2:75.0 Q3:86.5	Mean:89.9 Standard deviation:21. 1 Skewness:0. 7 Kurtosis:4.0 Q1:75.0 Q2:88.0 Q3:102.0	Mean:73.0 Standard deviation:15. 8 Skewness:1. 1 Kurtosis:4.9 Q1:62.0 Q2:70.0 Q3:81.0	Mean:78.7 Standard deviation:17. 1 Skewness:0. 9 Kurtosis:4.0 Q1:66.0 Q2:76.0 Q3:89.0	Mean:89.3 Standard deviation:23.5 Skewness:0.4 Kurtosis:4.3 Q:74.0 Q2:88.0 Q3:103.0
Hyperlipoproteine	N:915	N:1767	N:904	N:29	N:378	N:687	N:262	N:2196	N:802	N:901	N:449	N:1236	N:698	N:696
mia	%:44.7	%:56.7	%:35.1	%:23.2	%:30.8	%:41.0	%:22.5	%:52.1	%:60.3	%:46.0	%:43.5	%:73.2	%:47.9	%:43.1
Ever smoker	N:1413 %:61.0	N:460 %:14.8	N:1187 %:46.8	N:49 %:39.2	N:624 %:50.7	N:990 %:58.5	N:656 %:56.5	N:1010 %:24.2	N:821 %:63.2	N:444 %:22.4	N:617 %:59.7	N:865 %:52.6	-	N:969 %:60.1
Family history of CAD	N:945 %:40.8	N:1707 %:54.8	N:478 %:19.3	N:14 %:13.1	N:692 %:84.6	N:843 %:51.8	N:265 %:23.1	N:1236 %:31.0	N:714 %:58.9	N:843 %:46.3	N:213 %:20.6	N:540 %:33.2	-	-
lschaemic signs ECG	N:20 %:0.9	N:321 %:10.3	N:520 %:20.8	N:18 %:14.9	N:252 %:20.9	N:193 %:11.3	N:69 %:6.0	N:1319 %:26.7	-	-	N:35 %:3.4	N:872 %:52.1	N:89 %:6.1	N:588 %:36.1
Symptom onset ≧ 3h	N:45 %:1.9	N:1698 %:72.5	N:1715 %:70.6	N:29 %:78.4	N:594 %:49.2	N:848 %:53.6	N:752 %:65.8	N:2802 %:56.7	N:385 %:54.2	N:604 %:47.8	N:747 %:72.4	N:1057 %:62.6	N:934 %:64.5	N:342 %:39.7
log-transformed hs-cTnl Access First measurement (ng/L)	Mean:1.4 Standard deviation:1.1 Skewness:3. 3 Kurtosis:16.3 Q1:0.8 Q2:0.9 Q3:1.5	Mean:1.9 Standard deviation:1.7 Skewness:2. 1 Kurtosis:7.4 Q ₁ :0.8 Q ₂ :1.2 Q ₃ :2.2	Mean:2.3 Standard deviation:1.7 Skewness:1. 7 Kurtosis:5.4 Q ₁ :1.1 Q ₂ :1.7 Q ₃ :2.8	-	-	-	-	-	-	Mean:1.6 Standard deviation:1.1 Skewness:2. 9 Kurtosis:14.7 Q ₁ :0.8 Q ₂ :1.1 Q ₃ :1.8	-	Mean:2.4 Standard deviation:2.1 Skewness:1. 5 Kurtosis:4.7 Q ₁ :0.8 Q ₂ :1.6 Q ₃ :3.1	-	-
log-transformed hs-cTnl Access Second measurement (ng/L)	Mean:1.5 Standard deviation:1.3 Skewness:3. 2 Kurtosis:14.7 Q ₁ :0.8 Q ₂ :1.0 Q ₃ :1.6	Mean:2.0 Standard deviation:1.8 Skewness:2. 2 Kurtosis:7.4 Q ₁ :0.8 Q ₂ :1.2 Q ₃ :2.2	Mean:2.4 Standard deviation:1.8 Skewness:1. 6 Kurtosis:5.0 Q ₁ :1.1 Q ₂ :1.8 Q ₃ :3.0	-	-	-	-	-	-	Mean:1.8 Standard deviation:1.3 Skewness:2. 7 Kurtosis:11.5 Q ₁ :0.8 Q ₂ :1.4 Q ₃ :2.1	-	Mean:2.8 Standard deviation:2.2 Skewness:1. 4 Kurtosis:4.3 Q ₁ :1.2 Q ₂ :2.0 Q ₃ :3.7	-	-

Table S5: Detailed baseline characteristics for all cohorts of parameters used in the models

Fifth root of hs- cTnl Access rate ((ng/L)/hours)	Mean:0.2 Standard deviation:0.8 Skewness:1. 3 Kurtosis:8.1 Q ₁ :0 Q ₂ :0 Q ₃ :0.7	Mean:0.5 Standard deviation:1.1 Skewness:1. 3 Kurtosis:5.9 Q ₁ :0 Q ₂ :0.5 Q ₃ :0.9	Mean:0.3 Standard deviation:1.4 Skewness:- 0.1 Kurtosis:3.7 Q1:-0.8 Q2:0.6 Q3:1.0	-	-	-	-	-	-	Mean:0.2 Standard deviation:0.8 Skewness:1. 4 Kurtosis:8.3 Q ₁ :0 Q ₂ :0 Q ₃ :0.8	-	Mean:0.8 Standard deviation:1.3 Skewness:0. 3 Kurtosis:5.9 Q ₁ :0 Q ₂ :0.9 Q ₃ :1.2	-	-
log-transformed hs-cTnl Architect - First measurement (ng/L)	Mean:1.3 Standard deviation:1.2 Skewness:3. 1 Kurtosis:14.9 Q1:0.6 Q2:0.8 Q3:1.5	Mean:2.1 Standard deviation:1.8 Skewness:1. 9 Kurtosis:6.9 Q1:0.8 Q2:1.5 Q3:2.6	Mean:2.2 Standard deviation:1.8 Skewness:1. 8 Kurtosis:6.1 Q ₁ :1.0 Q ₂ :1.7 Q ₃ :2.8	-	Mean:1.8 Standard deviation:1.5 Skewness:2. 1 Kurtosis:8.1 Q ₁ :0.7 Q ₂ :1.5 Q ₃ :2.2	Mean:1.8 Standard deviation:1.6 Skewness:2. 1 Kurtosis:7.7 Q ₁ :0.6 Q ₂ :1.1 Q ₃ :2.2	-	-	Mean:2.1 Standard deviation:1.4 Skewness:1. 5 Kurtosis:6.4 Q ₁ :0.7 Q ₂ :1.6 Q ₃ :2.8	-	Mean:2.4 Standard deviation:1.3 Skewness:1. 7 Kurtosis:6.6 Q ₁ :1.4 Q ₂ :1.9 Q ₃ :3.0	Mean:2.7 Standard deviation:2.1 Skewness:1. 6 Kurtosis:5.3 Q ₁ :1.3 Q ₂ :1.9 Q ₃ :3.4	-	Mean:2.0 Standard deviation:1.4 Skewness:1.4 Kurtosis:5.6 Q ₁ :0.6 Q ₂ :1.6 Q ₃ :2.8
log-transformed hs-cTnl Architect - Second measurement (ng/L)	Mean:1.4 Standard deviation:1.3 Skewness:3. 1 Kurtosis:14.3 Q ₁ :0.6 Q ₂ :0.9 Q ₃ :1.6	Mean:2.2 Standard deviation:1.9 Skewness:1. 8 Kurtosis:6.1 Q ₁ :0.8 Q ₂ :1.5 Q ₃ :2.7	Mean:2.3 Standard deviation:1.9 Skewness:1. 6 Kurtosis:5.5 Q ₁ :1.0 Q ₂ :1.8 Q ₃ :3.0	-	Mean:2.0 Standard deviation:1.8 Skewness:2. 2 Kurtosis:8.0 Q1:0.7 Q2:1.4 Q3:2.3	Mean:2.0 Standard deviation:1.9 Skewness:2. 0 Kurtosis:6.9 Q ₁ :0.6 Q ₂ :1.1 Q ₃ :2.5	-	-	Mean:2.2 Standard deviation:1.6 Skewness:1. 7 Kurtosis:7.0 Q ₁ :1.1 Q ₂ :1.8 Q ₃ :3.0	-	Mean:2.5 Standard deviation:1.4 Skewness:1. 7 Kurtosis:6.4 Q ₁ :1.4 Q ₂ :2.1 Q ₃ :3.2	Mean:2.9 Standard deviation:2.3 Skewness:1. 4 Kurtosis:4.3 Q ₁ :1.3 Q ₂ :2.1 Q ₃ :3.6	-	Mean:2.3 Standard deviation:1.7 Skewness:1.6 Kurtosis:6.2 Q ₁ :0.9 Q ₂ :1.9 Q ₃ :3.0
Fifth root of hs- cTnl Architect rate ((ng/L)/hours)	Mean:0.2 Standard deviation:0.8 Skewness:1. 3 Kurtosis:9.3 Q1:0 Q2:0 C1:0 C2:0	Mean:0.4 Standard deviation:1.2 Skewness:0. 7 Kurtosis:4.9 Q1:-0.6 Q2:0.6 Q2:0.0	Mean:0.2 Standard deviation:1.3 Skewness:0. 3 Kurtosis:3.7 Q1:-0.9 Q2:0 O::11	-	Mean:0.3 Standard deviation:1.0 Skewness:1. 1 Kurtosis:5.5 Q:0 Q2:0 Q:0	Mean:0.3 Standard deviation:1.0 Skewness:1. 1 Kurtosis:6.5 Q:0 Q2:0 Q:0 Q	-	-	Mean:0.3 Standard deviation:0.9 Skewness:1. 1 Kurtosis:7.3 Q:0 Q2:0 Q:0 Q	-	Mean:0.2 Standard deviation:1.0 Skewness:0. 2 Kurtosis:4.2 Q1:0 Q2:0 0	Mean:0.6 Standard deviation:1.4 Skewness:0. 7 Kurtosis:4.7 Q1:-0.6 Q2:0.7 Q-:1.1	-	Mean:0.4 Standard deviation:1.0 Skewness:0.8 Kurtosis:8.0 $Q_1:0$ $Q_2:0.7$ $Q_3:0.9$
log-transformed hs-cTnl Atellica - First measurement (ng/L)	-	-	Mean:2.4 Standard deviation:1.8 Skewness:1. 7 Kurtosis:5.7 Q ₁ :0.9 Q ₂ :1.7 Q ₃ :3.0	Mean:2.0 Standard deviation:1.5 Skewness:2. 0 Kurtosis:7.1 Q ₁ :0.9 Q ₂ :1.4 Q ₃ :2.6	-	Mean:2.2 Standard deviation:1.7 Skewness:1. 9 Kurtosis:6.8 Q ₁ :0.9 Q ₂ :1.5 Q ₃ :2.7	-	-	-	Mean:1.8 Standard deviation:1.2 Skewness:2. 5 Kurtosis:11.5 Q ₁ :0.9 Q ₂ :1.3 Q ₃ :2.1	Mean:2.6 Standard deviation:1.5 Skewness:1. 2 Kurtosis:4.8 Q ₁ :1.5 Q ₂ :2.4 Q ₃ :3.4	Mean:2.6 Standard deviation:2.0 Skewness:1. 5 Kurtosis:4.8 Q ₁ :1.1 Q ₂ :1.9 Q ₃ :3.4	-	-
log-transformed hs-cTnl Atellica - Second measurement (ng/L)	-	-	Mean:2.5 Standard deviation:1.9 Skewness:1. 6 Kurtosis:5.0 Q ₁ :1.0 Q ₂ :1.8 Q ₃ :3.2	-	-	Mean:2.4 Standard deviation:1.9 Skewness:1. 8 Kurtosis:5.8 $Q_1:0.9$ $Q_2:1.6$ $Q_3:2.9$	-	-	-	Mean:2.0 Standard deviation:1.5 Skewness:2. 3 Kurtosis:9.5 Q ₁ :0.9 Q ₂ :1.5 Q ₃ :2.4	Mean:2.7 Standard deviation:1.5 Skewness:1. 2 Kurtosis:4.9 Q ₁ :1.6 Q ₂ :2.5 Q ₃ :3.5	Mean:2.9 Standard deviation:2.3 Skewness:1. 4 Kurtosis:4.0 Q ₁ :1.2 Q ₂ :2.1 Q ₃ :3.7	-	-
Fifth root of hs- cTnl Atellica rate ((ng/L)/hours)	-	-	Mean:0.3 Standard deviation:1.3 Skewness:0. 2 Kurtosis:5.8 Q1:-0.7	-	-	Mean:0.4 Standard deviation:1.1 Skewness:0. 3 Kurtosis:7.9 Q1:-0.4	-	-	-	Mean:0.3 Standard deviation:0.9 Skewness:1. 1 Kurtosis:7.7 Q ₁ :0	Mean:0.2 Standard deviation:1.1 Skewness:0. 1 Kurtosis:3.2 Q ₁ :-0.8	Mean:0.7 Standard deviation:1.3 Skewness:0. 8 Kurtosis:4.9 Q ₁ :0	-	-

			Q2:0 Q3:1.0			Q2:0.4 Q3:0.9				Q ₂ :0.5 Q ₃ :0.8	Q ₂ :0.6 Q ₃ :1.0	Q2:0.8 Q3:1.2		
log-transformed hs-cTnl Atellica VTLi - First measurement (ng/L)	-	-	-	Mean:2.0 Standard deviation:1.1 Skewness:1. 5 Kurtosis:6.3 Q1:1.3 Q2:1.8 Q3:2.4	-	-	-	-	-	-	Mean:2.2 Standard deviation:1.2 Skewness:1. 1 Kurtosis:5.0 Q ₁ :1.4 Q ₂ :2.1 Q ₃ :2.8	-	-	-
log-transformed hs-cTnl Atellica VTLi - Second measurement (ng/L)	-	-	-	Mean:2.0 Standard deviation:1.1 Skewness:1. 3 Kurtosis:4.9 Q:1.3 Q2:1.8 Q3:2.5	-	-	-	-	-	-	Mean:2.3 Standard deviation:1.3 Skewness:1. 0 Kurtosis:4.6 Q1:1.4 Q2:2.1 Q3:2.9	-	-	-
Fifth root of hs- cTnl Atellica VTLi rate ((ng/L)/hours)	-	-	-	Mean:0.0 Standard deviation:1.0 Skewness:0. 2 Kurtosis:1.5 Q1:-1.0 Q2:0 Q3:1.0	-	-	-	-	-	-	Mean:0.1 Standard deviation:1.0 Skewness:0. 1 Kurtosis:1.8 Q ₁ :-0.9 Q ₂ :0.6 Q ₃ :1.0	-	-	-
log-transformed hs-cTnT Elecsys - First measurement (ng/L)	Mean:2.1 Standard deviation:0.9 Skewness:1. 6 Kurtosis:6.2 Q1:1.5 Q2:1.9 O:2.5	Mean:2.5 Standard deviation:1.1 Skewness:1. 8 Kurtosis:6.4 Q1:1.6 Q2:2.1 O-:2.9	Mean:2.5 Standard deviation:1.2 Skewness:1. 3 Kurtosis:4.7 Q1:1.6 Q2:2.2 Ox:3.0	-	Mean:2.3 Standard deviation:0.9 Skewness:2. 2 Kurtosis:9.8 Q1:1.6 Q2:1.9 O:2.6	Mean:2.1 Standard deviation:1.1 Skewness:1. 6 Kurtosis:6.3 Q1:1.4 Q2:1.8 Q2:2.6	Mean:2.2 Standard deviation:1.0 Skewness:1. 6 Kurtosis:6.6 Q ₁ :1.4 Q ₂ :1.9 O ₂ :2.7	Mean:2.5 Standard deviation:1.1 Skewness:1. 7 Kurtosis:6.1 Q1:1.6 Q2:2.2 Q-3.0	Mean:2.6 Standard deviation:1.1 Skewness:0. 8 Kurtosis:3.6 Q1:1.8 Q2:2.5 O:3.3	-	-	Mean:2.5 Standard deviation:1.3 Skewness:1. 5 Kurtosis:5.1 $Q_1:1.6$ $Q_2:2.2$ $Q_3:3.0$	Mean:2.5 Standard deviation:1.1 Skewness:1. 2 Kurtosis:4.7 Q1:1.6 Q2:2.2 Ox:3.0	-
log-transformed hs-cTnT Elecsys - Second measurement (ng/L)	Mean:2.1 Standard deviation:1.0 Skewness:1. 8 Kurtosis:7.1 Q ₁ :1.4 Q ₂ :1.9 Q ₃ :2.4	Mean:2.5 Standard deviation:1.2 Skewness:1. 8 Kurtosis:6.2 Q ₁ :1.6 Q ₂ :2.0 Q ₃ :2.9	Mean:2.5 Standard deviation:1.3 Skewness:1. 2 Kurtosis:4.4 Q ₁ :1.6 Q ₂ :2.2 Q ₃ :3.1	-	Mean:2.3 Standard deviation:1.0 Skewness:2. 4 Kurtosis:10.7 Q ₁ :1.6 Q ₂ :1.9 Q ₃ :2.7	Mean:2.1 Standard deviation:1.8 Skewness:2. 2 Kurtosis:7.8 Q ₁ :1.1 Q ₂ :1.1 Q ₃ :2.5	Mean:2.3 Standard deviation:1.0 Skewness:1. 7 Kurtosis:6.9 Q ₁ :1.4 Q ₂ :1.9 Q ₃ :2.8	Mean:2.7 Standard deviation:1.2 Skewness:1. 5 Kurtosis:5.5 Q ₁ :1.8 Q ₂ :2.3 Q ₃ :3.2	Mean:2.6 Standard deviation:1.1 Skewness:1. 0 Kurtosis:4.2 Q ₁ :1.8 Q ₂ :2.5 Q ₃ :3.3	-	-	Mean:2.6 Standard deviation:1.5 Skewness:1. 4 Kurtosis:4.7 Q ₁ :1.4 Q ₂ :2.1 Q ₃ :3.1	Mean:2.5 Standard deviation:1.1 Skewness:1. 2 Kurtosis:4.8 Q ₁ :1.6 Q ₂ :2.2 Q ₃ :3.1	
Fifth root of hs- cTnT Elecsys rate ((ng/L)/hours)	Mean:0.0 Standard deviation:0.8 Skewness:0. 6 Kurtosis:2.9 Q ₁ :-0.7 Q ₂ :-0.3 Q ₃ :0.7	$\begin{array}{c} \text{Mean:0.2}\\ \text{Standard}\\ \text{deviation:1.0}\\ \text{Skewness:0.}\\ 3\\ \text{Kurtosis:2.5}\\ \text{Q}_1:-0.8\\ \text{Q}_2:0\\ \text{Q}_2:0\\ \text{Q}_3:0.9\\ \end{array}$	Mean:0.1 Standard deviation:1.1 Skewness:0. 2 Kurtosis:2.2 Q ₁ :-1.0 Q ₂ :0 Q ₃ :1.0	-	Mean:0.0 Standard deviation:0.8 Skewness:0. 8 Kurtosis:5.4 Q ₁ :0 Q ₂ :0 Q ₃ :0	$\begin{array}{c} \text{Mean:-0.1}\\ \text{Standard}\\ \text{deviation:1.5}\\ \text{Skewness:1.}\\ 9\\ \text{Kurtosis:10.6}\\ \text{Q}_1:-1.1\\ \text{Q}_2:-0.8\\ \text{Q}_3:0.8\\ \end{array}$	Mean:0.0 Standard deviation:0.8 Skewness:0. 5 Kurtosis:3.5 Q ₁ :-0.9 Q ₂ :0 Q ₃ :0	Mean:0.1 Standard deviation:1.1 Skewness:0. 2 Kurtosis:2.4 Q ₁ :-1.0 Q ₂ :0 Q ₃ :1.0	Mean:0.0 Standard deviation:0.9 Skewness:0. 5 Kurtosis:3.0 Q₁:-0.8 Q₂:0 Q₂:0 Q₃:0.8	-	-	Mean:-0.1 Standard deviation:1.1 Skewness:0. 9 Kurtosis:3.2 Q ₁ :-0.9 Q ₂ :-0.7 Q ₃ :0.8	Mean:0.0 Standard deviation:1.0 Skewness:0. 2 Kurtosis:1.7 Q ₁ :-1.0 Q ₂ :-0.5 Q ₃ :1.0	-
log-transformed hs-cTnl Pathfast - First measurement (ng/L)	-	-	Mean:2.1 Standard deviation:1.8 Skewness:2. 0	-	-	-	-	-	-	-	-	Mean:2.2 Standard deviation:1.9 Skewness:2. 0	-	-

			Kurtosis:6.5 Q ₁ :0.8 Q ₂ :1.3 Q ₃ :2.5									Kurtosis:7.0 Q ₁ :0.8 Q ₂ :1.4 Q ₃ :2.5		
log-transformed hs-cTnl Pathfast - Second measurement (ng/L)	-	-	Mean:2.2 Standard deviation:1.9 Skewness:1. 8 Kurtosis:5.8 Q1:0.8 Q1:0.8 Q2:1.4 Q3:2.7	-	-	-	-	-	-	-	-	Mean:2.6 Standard deviation:2.2 Skewness:1. 7 Kurtosis:5.0 Q1:0.9 Q2:1.6 Q3:3.0	-	-
Fifth root of hs- cTnl Pathfast rate ((ng/L)/hours)	-	-	Mean:0.2 Standard deviation:1.3 Skewness:0. 2 Kurtosis:4.5 Q ₁ :-0.8 Q ₂ :0 Q ₃ :1.0	-	-	-	-	-	-	-	-	Mean:0.5 Standard deviation:1.4 Skewness:0. 3 Kurtosis:6.1 Q1:-0.6 Q2:0.7 Q3:1.1	-	-

For continuous variables mean, standard deviation, skewness, kurtosis and quartiles (Q_1, Q_2, Q_3) are presented. For binary variables absolute (N) and relative frequencies (%). Continuous variables are presented in the form that is expected by the ARTEMIS model (i.e., in some cases after a transformation). The first and second troponin measurements were log-transformed (the natural logarithm was used). The troponin rate is defined as the difference of the second minus the first measurement divided by the time between measurements. The troponin rate was used after taking its fifth root. Abbreviations: CAD = coronary artery disease, ECG = electrocardiogram, hs-cTn = high-sensitivity cardiac troponin.

Table S6: Variables and machines selected for the single and the serial hs-cTn measurement model

Single hs	s-cTn measurement model	Serial hs-cTn measurement model			
Variables included	Machines included	Variables included	Machines included		
Hs-cTn at baseline (0h)	Logistic regression with restricted cubic splines	Hs-cTn at baseline (0h)	Logistic regression with restricted cubic splines		
Age	Gradient boosting machine	Serial hs-cTn measurement	Gradient boosting machine		
Sex	Multivariate adaptive regression spline	Time between serial sampling (minutes)	Multivariate adaptive regression spline		
Heart rate	Elastic net	Age	Random forest		
Ever smoker		Sex			
Hyperlipoproteinemia		Heart rate			
Family history of CAD		Hyperlipoproteinemia			
Ischemic signs in ECG		Symptom onset ≥ 3 hours			
Symptom onset ≥ 3 hours					

Table S7: Discrimination measures (logLoss, AUC, BS) for single and serial hs-cTn measurement for each cohort and the global dataset per assay, uncalibrated and calibrated using logistic regression, calibration using logistic regression with restricted cubic splines and by Elkan calibration.

- Attached as Excel-file -

Table S8: Diagnostic performance measures for using different MI probabilities as thresholds for the single hs-cTn measurement model

- Attached as Excel-file -

This table displays the diagnostic performance measures using the MI probability as threshold. These analyses are based on data from the validation cohort stenoCardia as well as the generalization cohorts ADAPT-BSN, ADPS-CH, DROP-ACS, FASTEST, LUND, RAPID-CPU, ROMI, SAMI, SEIGE & SAFETY, STOP-CP and UTROPIA. Only for the model performance using the Elecsys and Architect assay, DROP-ACS and ROMI cohorts were excluded, as they did not represent the entire spectrum of MI probability.

Table S9: Diagnostic performance measures for using different MI probabilities as thresholds for the serial hs-cTn measurement model

- Attached as Excel-file -

This table displays the diagnostic performance measures using the MI probability as threshold. These analyses are based on data from the validation cohort stenoCardia as well as the generalization cohorts ADAPT-BSN, ADPs-CH, DROP-ACS, FASTEST, LUND, RAPID-CPU, ROMI, SAMI, SEIGE & SAFETY, STOP-CP and UTROPIA. Only for the model performance using the Elecsys and Architect assay, DROP-ACS and ROMI cohorts were excluded, as they did not represent the entire spectrum of MI probability.

		ESC 0h Algorithm							
		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi		
		Mean [95% Cl]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]		
	NPV	93.70 [91.70, 95.25]	94.81 [93.19, 96.07]	95.42 [93.22, 96.92]	95.95 [94.05, 97.26]	96.18 [94.99, 97.38]	92.85 [91.23, 94.47]		
Pulo-In	PPV	76.59 [65.62, 84.87]	75.83 [58.02, 87.69]	66.60 [45.64, 82.56]	80.88 [72.37, 87.23]	71.07 [68.24, 73.90]	60.00 [56.92, 63.08]		
Kule-III	Sensitivity	53.31 [46.41, 60.09]	58.95 [43.66, 72.69]	53.33 [32.34, 73.20]	61.89 [43.14, 77.67]	72.27 [69.47, 75.06]	23.86 [21.18, 26.54]		
	Specificity	97.70 [96.32, 98.57]	97.54 [94.50, 98.91]	97.28 [94.13, 98.76]	98.44 [94.39, 99.58]	95.96 [94.73, 97.19]	98.42 [97.63, 99.20]		
	NPV	99.16 [93.94, 99.89]	99.33 [98.92, 99.59]	99.87 [98.83, 99.99]	99.55 [98.43, 99.87]	100.00 [100.00, 100.00]	100.00 [100.00, 100.00]		
Dula Out	PPV	14.71 [10.94, 19.51]	14.67 [9.22, 22.54]	11.08 [6.04, 19.47]	13.51 [6.99, 24.49]	14.27 [12.09, 16.45]	10.59 [8.66, 12.52]		
Kule-Out	Sensitivity	99.23 [98.65, 99.57]	98.77 [98.25, 99.14]	99.50 [96.65, 99.93]	98.84 [97.48, 99.47]	100.00 [100.00, 100.00]	100.00 [100.00, 100.00]		
	Specificity	15.66 [11.65, 20.73]	16.42 [8.65, 28.95]	15.23 [10.01, 22.50]	16.44 [6.59, 35.44]	17.53 [15.16, 19.91]	15.95 [13.65, 18.25]		
		n (% [95% CI])		n (% [95% CI])	n (% [95% CI])	p (% [95% CI])	n (% [95% CII)		
			II (// [95 // CI])	ii (% [95 % Ci])		ii (// [35 // Ci])	ii (% [95 % Ci])		
	Rule-out	(13.74% [10.35, 18.02])	1009 (14.16% [7.71, 24.58])	616 (13.67% [8.36, 21.55])	724 (14.29% [5.94, 30.56])	152 (15.42% [13.16, 17.67])	141 (14.51% [12.29, 16.72])		
Proportions	Observe	8138 (76.74% [70.33, 82.12])	5264 (73.87% [58.03, 85.26])	3466 (76.96% [73.51, 80.09])	3750 (74.00% [50.77, 88.70])	713 (72.31% [69.52, 75.11])	796 (81.89% [79.47, 84.31])		
	Rule-in	933 (8.80% [6.87, 11.21])	665 (9.33% [5.59, 15.17])	345 (7.65% [3.24, 17.01])	401 (7.91% [3.33, 17.61])	121 (12.27% [10.22, 14.32])	35 (3.60% [2.43, 4.77])		

Table S10: Comparison of ESC 0h, 0/1h and 0/2h algorithms with the ARTEMIS pathway using a single or a serial hs-cTn measurement.

Rule-out threshold:		ARTEMIS single (0h) hs-cTn measurement model, rule-out: 0.5% MI probability, rule-in: 50% MI probabili								
0.5% MI Rule-in threshold:		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi			
50% MI		Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]			
	NPV	93.86 [92.14, 95.22]	94.51 [93.10, 95.64]	95.13 [91.74, 97.17]	96.00 [94.73, 96.96]	95.75 [94.59, 96.90]	92.56 [90.91, 94.21]			
Pulo In	PPV	73.85 [66.91, 79.77]	74.54 [67.34, 80.61]	70.55 [52.99, 83.58]	78.44 [68.79, 85.72]	76.51 [74.08, 78.93]	58.06 [54.96, 61.17]			
Rule-III	Sensitivity	54.29 [42.08, 66.00]	52.24 [32.57, 71.24]	45.29 [14.40, 80.30]	62.83 [48.28, 75.38]	74.71 [72.22, 77.19]	20.45 [17.92, 22.99]			
	Specificity	97.15 [96.18, 97.88]	97.76 [96.38, 98.62]	98.24 [95.79, 99.27]	98.07 [96.68, 98.89]	96.13 [95.02, 97.23]	98.53 [97.77, 99.29]			
	NPV	99.61 [99.23, 99.80]	99.65 [99.45, 99.78]	99.83 [99.59, 99.93]	99.69 [99.39, 99.84]	99.68 [99.36, 100.00]	99.69 [99.34, 100.00]			
Dula Out	PPV	16.66 [12.44, 21.94]	17.79 [12.35, 24.93]	18.92 [8.74, 36.25]	18.64 [14.27, 23.98]	19.63 [17.36, 21.90]	13.41 [11.27, 15.55]			
Rule-Out	Sensitivity	99.05 [97.86, 99.58]	99.26 [98.17, 99.70]	99.09 [95.75, 99.81]	98.76 [98.31, 99.09]	99.41 [98.97, 99.85]	98.86 [98.20, 99.53]			
	Specificity	34.91 [23.22, 48.75]	34.97 [17.91, 56.99]	54.70 [42.42, 66.42]	49.41 [37.21, 61.68]	31.28 [28.63, 33.93]	36.45 [33.41, 39.48]			
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])			

	Rule-out	(30.80% [21.06, 42.62])	(30.47% [15.73, 50.70])	(48.70% [40.71, 56.76])	(44.18% [31.58, 57.59])	(26.85% [24.32, 29.38])	(33.25% [30.28, 36.22])
Proportions	Observe	7052 (66.50% [49.29, 80.22])	4207 (59.04% [41.06, 74.89])	1967 (43.67% [27.98, 60.74])	2330 (45.99% [37.74, 54.47])	582 (59.05% [56.24, 61.86])	618 (63.56% [60.53, 66.59])
	Rule-in	954 (9.00% [6.27, 12.77])	549 (7.70% [4.34, 13.31])	249 (5.52% [1.57, 17.63])	411 (8.11% [4.21, 15.06])	139 (14.10% [12.12, 16.09])	31 (3.19% [2.08, 4.29])

			ESC 0/1h Algorithm								
		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi				
		Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]				
	NPV	97.62 [96.08, 98.56]	97.80 [96.26, 98.72]								
Rule-In	PPV	65.78 [60.30, 70.87]	73.30 [47.14, 89.42]								
itule-iii	Sensitivity	81.49 [76.55, 85.59]	82.92 [67.74, 91.82]								
	Specificity	94.75 [92.32, 96.45]	96.64 [94.84, 97.83]								
Rule-Out	NPV	99.52 [98.39, 99.86]	99.68 [98.59, 99.93]								
	PPV	29.99 [20.93, 40.94]	28.42 [15.81, 45.63]								
	Sensitivity	97.55 [93.48, 99.10]	98.77 [97.39, 99.42]								
	Specificity	71.63 [63.69, 78.42]	67.86 [63.99, 71.50]								
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])				
	Rule-out	2239 (63.67% [56.11, 70.60])	345 (58.27% [54.26, 62.19])								
Proportions	Observe	788 (22.41% [17.83, 27.76])	156 (26.36% [22.97, 30.06])								
	Rule-in	479 (13.63% [9.74, 18.75])	87 (14.75% [10.41, 20.48])								

Rule-out threshold:		ARTEMIS seria	ll (0/1h) hs-cTn mea	surement model, ru	le-out: 0.5% MI prol	bability, rule-in: 50%	6 MI probability
0.5% MI Rule-in threshold:		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi
50% MI		Mean [95% CI]	Mean [95% Cl]	Mean [95% Cl]	Mean [95% Cl]	Mean [95% Cl]	Mean [95% CI]
	NPV	95.90 [94.72, 96.83]	96.27 [94.41, 97.53]				
Rule-In	PPV	75.35 [68.86, 80.85]	68.60 [33.02, 90.64]				
	Sensitivity	66.72 [58.70, 73.88]	66.56 [35.21, 87.94]				
	Specificity	97.28 [95.66, 98.31]	96.84 [95.07, 97.98]				

	NPV	99.36 [94.70, 99.93]	99.59 [98.48, 99.89]				
Pulo-Out	PPV	19.16 [15.74, 23.13]	23.77 [16.08, 33.68]				
Kule-Out	Sensitivity	98.71 [98.28, 99.04]	98.77 [97.39, 99.42]				
	Specificity	34.09 [15.03, 60.20]	52.95 [48.91, 56.96]				
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])
		1054	281				
	Rule-out	(29.98% [13.58, 53.83])	(47.47% [38.78, 56.31])				
Duo u o uti o u o		1872	240				
Proportions	Observe	(53.25% [30.17, 75.01])	(40.57% [36.67, 44.59])				
		344	75				
	Rule-in	(9.78% [6.42, 14.61])	(12.62% [7.63, 20.17])				
Rule-out		ARTEMIS seri	al (0/1h) hs-cTn mea	surement model. r	ule-out: 1% MI prot	ability. rule-in: 50%	MI probability
threshold: 1% MI		F 1	A	A tallian	A	Dethfeet	A4+11:+++)/TL :
Rule-in threshold:		Elecsys	Architect	Atellica	Access	Patniast	AtellicaviLi
50% MI		Mean [95% CI]	Mean [95% CI]	Mean [95% Cl]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]
	NPV	95.90 [94.72, 96.83]	96.27 [94.41, 97.53]				
Rule-In	PPV	75.35 [68.86, 80.85]	68.60 [33.02, 90.64]				
itule-ili	Sensitivity	66.72 [58.70, 73.88]	66.56 [35.21, 87.94]				
	Specificity	97.28 [95.66, 98.31]	96.84 [95.07, 97.98]				
	NPV	99.57 [99.18, 99.78]	99.06 [93.07, 99.88]				
Rule-Out	PPV	23.98 [19.94, 28.55]	27.31 [17.70, 39.63]				
	Sensitivity	98.36 [97.53, 98.91]	93.90 [38.12, 99.74]				
	Specificity	58.05 [37.28, 76.32]	66.85 [54.01, 77.60]				
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])
		1808	361				
	Rule-out	(51.41% [32.59, 69.84])	(60.90% [42.79, 76.44])				
Proportions		1314	169				
	Observe	(37.37% [22.78, 54.68])	(28.60% [19.23, 40.25])				
		344	75				
	Rule-in	(9.78% [6.42, 14.61])	(12.62% [7.63, 20.17])				
Rule-out		ARTEMIS seri	al (0/1h) hs-cTn mea	surement model, r	ule-out: 2% MI prot	oability, rule-in: 50%	MI probability
2% MI		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi

Rule-in threshold:							
50% MI		Mean [95% CI]	Mean [95% Cl]	Mean [95% CI]	Mean [95% CI]	Mean [95% Cl]	Mean [95% Cl]
	NPV	95.90 [94.72, 96.83]	96.27 [94.41, 97.53]				
Pulo-In	PPV	75.35 [68.86, 80.85]	68.60 [33.02, 90.64]				
itule-ili	Sensitivity	66.72 [58.70, 73.88]	66.56 [35.21, 87.94]				
	Specificity	97.28 [95.66, 98.31]	96.84 [95.07, 97.98]				
	NPV	99.22 [98.68, 99.54]	98.81 [84.92, 99.92]				
Rule-Out	PPV	29.74 [26.30, 33.44]	32.19 [18.89, 49.19]				
	Sensitivity	95.40 [92.61, 97.17]	90.61 [13.12, 99.84]				
	Specificity	71.89 [63.80, 78.78]	77.76 [63.10, 87.73]				
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])
	Rule-out	2264 (64.41% [54.58, 73.15])	425 (71.78% [48.42, 87.33])				
Proportions	Observe	894 (25.44% [20.48, 31.14])	103 (17.34% [7.46, 35.33])				
	Rule-in	344 (9.78% [6.42, 14.61])	75 (12.62% [7.63, 20.17])				

			ESC 0/2h Algorithm						
		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi		
		Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]		
	NPV	96.71 [94.52, 98.05]	97.34 [95.99, 98.24]	97.95 [92.16, 99.49]	97.33 [96.19, 98.14]				
Rule-In	PPV	80.05 [74.02, 84.97]	76.43 [60.15, 87.44]	64.24 [50.04, 76.32]	79.64 [64.31, 89.46]				
	Sensitivity	78.42 [70.83, 84.47]	80.51 [73.64, 85.94]	70.06 [59.87, 78.58]	77.56 [64.19, 86.95]				
	Specificity	97.01 [95.33, 98.10]	96.64 [93.22, 98.37]	95.61 [91.19, 97.87]	98.01 [88.60, 99.68]				
	NPV	99.18 [98.81, 99.43]	99.73 [98.54, 99.95]	99.46 [97.07, 99.90]	99.78 [98.95, 99.95]				
Pulo-Out	PPV	37.84 [29.13, 47.42]	29.49 [20.47, 40.46]	19.54 [10.31, 33.92]	24.34 [15.66, 35.79]				
Rule-Out	Sensitivity	96.31 [93.86, 97.80]	98.50 [97.71, 99.02]	87.50 [82.72, 91.10]	98.58 [97.49, 99.20]				
	Specificity	76.30 [69.15, 82.21]	66.60 [46.16, 82.26]	64.56 [39.03, 83.83]	69.61 [55.01, 81.10]				
		n (% [95% CI])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])		
Droportiono		2820	2557	736	1250				
Proportions	Rule-out	(66.53% [59.07, 73.24])	(57.89% [39.16, 74.60])	(58.74% [34.10, 79.66])	(62.86% [48.76, 75.07])				

Observe	873	1232	361	505
	(20.62% [16.80, 25.04])	(27.90% [15.86, 44.28])	(28.78% [12.86, 52.54])	(25.39% [17.27, 35.69])
Rule-in	531	557	130	186
	(12.53% [9.19, 16.86])	(12.66% [8.13, 19.19])	(10.35% [4.93, 20.44])	(9.34% [4.07, 20.02])

Rule-out threshold:		ARTEMIS seria	al (0/2h) hs-cTn mea	oability, rule-in: 50% MI probability			
0.5% MI Rule-in threshold:		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi
50% MI		Mean [95% Cl]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% Cl]
	NPV	95.84 [94.40, 96.92]	96.63 [94.49, 97.96]	97.12 [91.93, 99.01]	97.45 [96.41, 98.19]		
Pulo-In	PPV	80.61 [77.00, 83.78]	75.32 [66.40, 82.49]	76.74 [63.77, 86.09]	78.95 [71.25, 85.02]		
Kule-III	Sensitivity	72.07 [65.86, 77.53]	72.86 [47.12, 89.00]	61.91 [34.59, 83.33]	77.43 [59.84, 88.77]		
	Specificity	97.32 [96.20, 98.12]	97.72 [96.10, 98.68]	98.45 [97.55, 99.03]	98.20 [97.27, 98.82]		
	NPV	98.37 [94.60, 99.52]	99.48 [96.75, 99.92]	99.00 [95.19, 99.80]	98.75 [68.50, 99.97]		
Pulo-Out	PPV	20.00 [16.97, 23.41]	24.15 [14.94, 36.57]	18.33 [5.82, 44.88]	20.88 [9.86, 38.91]		
Kule-Out	Sensitivity	98.87 [96.71, 99.62]	98.27 [96.88, 99.05]	95.11 [89.85, 97.71]	96.65 [90.61, 98.85]		
	Specificity	24.31 [9.07, 50.85]	59.90 [47.84, 70.87]	59.89 [32.81, 82.04]	56.71 [35.13, 76.01]		
		n (% [95% Cl])	n (% [95% CI])	n (% [95% CI])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])
		890	2367	682	1034		
	Rule-out	(20.99% [8.11, 44.42])	(53.58% [42.52, 64.31])	(54.42% [35.91, 71.78])	(52.00% [35.30, 68.26])		
Proportions		2450	1552	489	715		
	Observe	(57.80% [35.14, 77.60])	(35.13% [24.45, 47.53])	(39.01% [14.22, 71.15])	(35.95% [18.71, 57.78])		
		486	420	71	164		
	Rule-in	(11.46% [8.14, 15.90])	(9.50% [4.52, 18.90])	(5.70% [1.90, 15.90])	(8.24% [3.90, 16.58])		

ARTEMIS serial (0/2h) hs-cTn measurement model, rule-out: 1% MI probability, rule-in: 50% MI probability

1% MI Rule-in threshold:		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi
50% MI		Mean [95% Cl]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% Cl]	Mean [95% CI]
Rule-In	NPV	95.84 [94.40, 96.92]	96.63 [94.49, 97.96]	97.12 [91.93, 99.01]	97.45 [96.41, 98.19]		
	PPV	80.61 [77.00, 83.78]	75.32 [66.40, 82.49]	76.74 [63.77, 86.09]	78.95 [71.25, 85.02]		
	Sensitivity	72.07 [65.86, 77.53]	72.86 [47.12, 89.00]	61.91 [34.59, 83.33]	77.43 [59.84, 88.77]		
	Specificity	97.32 [96.20, 98.12]	97.72 [96.10, 98.68]	98.45 [97.55, 99.03]	98.20 [97.27, 98.82]		
Rule-Out	NPV	99.51 [98.75, 99.81]	99.48 [96.75, 99.92]	99.60 [98.59, 99.89]	99.32 [94.58, 99.92]		
	PPV	27.01 [24.48, 29.70]	24.15 [14.94, 36.57]	23.59 [8.11, 51.93]	26.95 [15.10, 43.35]		

Rule-out

threshold:

	Sensitivity	98.22 [97.09, 98.92]	98.27 [96.88, 99.05]	97.63 [91.94, 99.34]	96.60 [92.17, 98.56]		
	Specificity	60.79 [44.68, 74.85]	59.90 [47.84, 70.87]	71.18 [56.43, 82.49]	72.78 [56.84, 84.44]		
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])
	Rule-out	2243) (52.91% [37.08, 68.17])	2367 (53.58% [42.52, 64.31])	792 (63.24% [52.98, 72.42])	1313 (66.05% [52.68, 77.27])		
Proportions	Observe	1464 (34.53% [24.08, 46.73])	1552 (35.13% [24.45, 47.53])	338 (26.97% [14.74, 44.10])	467 (23.49% [14.24, 36.23])		
	Rule-in	486 (11.46% [8.14, 15.90])	420 (9.50% [4.52, 18.90])	71 (5.70% [1.90, 15.90])	164 (8.24% [3.90, 16.58])		

_ .

Rule-out threshold:		ARTEMIS serial (0/2h) hs-cTn measurement model, rule-out: 2% MI probability, rule-in: 50% MI probability						
2% MI Rule-in threshold:		Elecsys	Architect	Atellica	Access	Pathfast	AtellicaVTLi	
50% MI		Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	Mean [95% CI]	
Rule-In	NPV	95.84 [94.40, 96.92]	96.63 [94.49, 97.96]	97.12 [91.93, 99.01]	97.45 [96.41, 98.19]			
	PPV	80.61 [77.00, 83.78]	75.32 [66.40, 82.49]	76.74 [63.77, 86.09]	78.95 [71.25, 85.02]			
	Sensitivity	72.07 [65.86, 77.53]	72.86 [47.12, 89.00]	61.91 [34.59, 83.33]	77.43 [59.84, 88.77]			
	Specificity	97.32 [96.20, 98.12]	97.72 [96.10, 98.68]	98.45 [97.55, 99.03]	98.20 [97.27, 98.82]			
Rule-Out								
	NPV	99.34 [98.90, 99.61]	99.46 [98.92, 99.74]	99.53 [98.68, 99.83]	99.52 [98.62, 99.83]			
	PPV	36.27 [31.66, 41.16]	37.44 [26.08, 50.38]	30.37 [11.65, 59.05]	38.90 [24.27, 55.86]			
	Sensitivity	97.21 [96.34, 97.87]	96.67 [94.74, 97.91]	95.05 [76.03, 99.15]	95.18 [87.50, 98.23]			
	Specificity	74.87 [65.91, 82.12]	81.72 [74.29, 87.37]	81.23 [64.71, 91.08]	86.09 [82.83, 88.80]			
		n (% [95% Cl])	n (% [95% Cl])	n (% [95% CI])	n (% [95% Cl])	n (% [95% Cl])	n (% [95% Cl])	
		2768	3230	919	1565			
Proportions	Rule-out	(65.28% [54.74, 74.51])	(73.13% [64.12, 80.57])	(73.38% [58.37, 84.42])	(78.72% [73.56, 83.10])			
		963	695	218	242			
	Observe	(22.71% [16.83, 29.91])	(15.74% [9.79, 24.34])	(17.40% [7.34, 35.90])	(12.19% [8.77, 16.69])			
		486	420	71	164			
	Rule-in	(11.46% [8.14, 15.90])	(9.50% [4.52, 18.90])	(5.70% [1.90, 15.90])	(8.24% [3.90, 16.58])			

This table compares the diagnostic performance of the ESC 0h, 0/1h and 0/2h algorithm to the ARTEMIS pathway using either a single hs-cTn (0h) or a serial hs-cTn (based on 0/1h or 0/2h samples) measurement. For the ARTEMIS pathway the performance is displayed using either an MI probability threshold of <0.5%, <1% or <2%, while the rule-in threshold was always set to >50%. Due to the meta-analytic background of the analyses, the proportions of rule-out, observe and rule-in zone due not sum up to 100%.