Supplementary Materials for

SMYD1a Protects the Heart from Ischemic Injury by Regulating OPA1 Mediated Cristae Remodeling and Supercomplex Formation.

Marta W. Szulik^{1*}, Steven Valdez¹, Maureen Walsh², Kathryn Davis¹, Ryan Bia¹, Emilee Horiuchi¹, Sean O'Very¹, Anil K. Laxman³, Linda Sandaklie-Nicolova⁴, David R. Eberhardt¹, Jessica R. Durrant⁵, Hanin Sheikh¹, Samuel Hickenlooper¹, Magnus Creed¹, Cameron Brady¹, Mickey Miller¹, Li Wang¹, June Garcia-Llana¹, Christopher Tracy¹, Stavros G. Drakos^{1,6}, Katsuhiko Funai², Dipayan Chaudhuri^{1,6,7}, Sihem Boudina⁸, Sarah Franklin^{1,6*}.

¹ Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT

² Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA

³ Metabolic Phenotypic Core Facility, University of Utah, Salt Lake City, UT, USA

⁴ Electron Microscopy Core Laboratory, University of Utah, Salt Lake City, UT, USA

⁵ Dallas Tissue Research, Farmers Branch, TX, USA

⁶ Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA

⁷ Department of Biochemistry, Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA

⁸ Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.

*Denotes co-corresponding authors: Marta W. Szulik and Sarah Franklin. **Email:** <u>m.szulik@utah.edu</u>, <u>sarah.franklin@utah.edu</u>

Table S1. Clinical characteristics of the study population. Left ventricular ejection fraction (LVEF) and left ventricular end diastolic diameter (LVEDD) at both LVAD implantation (pre-LVAD) and LVAD explantation/cardiac transplantation (post-LVAD) showing clinical differences between Responders and Non-Responders. (Values reported as Mean ± SEM).

Variable	Responders N=5	Non-responders N=5	<i>p</i> -value
Male sex, (%)	4 (80)	4 (80)	
Age at LVAD implantation, years	56.2 ± 9.7	54.2 ± 7.6	0.876
Pre-LVAD			
LVEDD, cm	5.2 ± 0.5	6.2 ± 0.5	0.159
LVEF, %	38.8 ± 7.2	16.2 ± 3.1	0.017
Post-LVAD			
LVEDD, cm	5.0 ± 0.2	5.8 ± 0.6	0.277
LVEF, %	45.0 ± 3.9	23.6 ± 2.6	0.002
HF Etiology			
Ischemic cardiomyopathy, n (%)	2 (40.0)	2 (40.0)	
Non-ischemic cardiomyopathy, n (%)	3 (60.0)	3 (60.0)	
New York Heart Association Functional Class			
III, n (%)	2 (40.0)	2 (40.0)	
IV, n (%)	3 (60.0)	3 (60.0)	

Variable	Donors, N=5, (Mean ± SEM)
Female, n (%)	5 (100%)
Age	38 ± 12
Weight	72 ± 16
Cause of death	
CVA Stroke	40%
Anoxia	40%
Head Trauma	20%

Table S2. Clinical characteristics of the study population, donors. CVA – cardiovascular accident.

Table S3. List of primers used in this study.

<i>β-Actin-</i> mouse	Forward	TGT	TAC	CAA	CTG	GGA	CGA					
	Reverse	GGG	GTG	TTG	AAG	GTC	TCA					
<i>Nppa</i> (ANF)- mouse	Forward	CTG	ATG	GAT	TTC	AAG	AAC	CTG	СТ			
	Reverse	CTC	TGG	GCT	CCA	ATC	CTG	ТС				
<i>Myh6</i> (αMHC)- mouse	Forward	GAA	CAG	CTG	GGA	GAA	GGG	GG				
	Reverse	GCC	TCT	GAG	GCT	ATT	CIA	TTG	G			
<i>Myh7</i> (βMHC)- mouse	Forward	GAA	CAG	CTG	GGA	GAA	GGG	GG				
	Reverse	GCC	TCT	GAG	GCT	ATT	СТА	TTG	G			
Apt2a2 (Serca2a)-	Forward	CCT	TCT	ACC	AGC	TGA	GTC	ATT	Т			
mouse	Reverse	CAG	ATG	GAG	CCC	ACG	ACC	CA				
<i>Ppargc1</i> (PGC-1α)- mouse	Forward	CTT	CGA	GCT	GTA	CTT	TTG	TGG	ACG	GAA		
	Reverse	CTC	TGA	GCT	TCC	TTC	AGT	AAA	СТА	TCA	AA	
<i>Vim</i> - mouse	Forward	TGA	GAT	CGC	CAC	СТА	CAG	GA				
	Reverse	TGA	TCA	CCT	GTC	CAT	CTC	TGG				
Col1a1- mouse	Forward	GGT	CAG	ACC	TGT	GTG	TTC	CC				
	Reverse	GGT	CCA	TGT	AGG	СТА	CGC	ΤG				
<i>Smyd1a</i> - mouse	Forward	GTG	AAA	TCC	ATG	TTT	CAC	ACG	CAG	ATG	AG	
	Reverse	CAG	GAA	GAG	GTC	GTC	CTT	CAG	С			
Smyd1b- mouse	Forward	CTG	CAC	TGT	CAT	ATT	CAA	CAA	TGG	CAA	GAT	
	Reverse	CAG	GAA	GAG	GTC	GTC	CTT	CAG	С			
<i>Smyd1-</i> human	Forward	GCC	CAT	TAC	TGC	GAC	CGC	AC				
	Reverse	CTC	CCC	AAA	GTG	CTC	CAC	GTG	G			
Smyd1- mouse	Forward	CTC	GCT	CCG	AGG	GTT	TGT	ATC	ACG			
genotyping	Reverse	CTT	ATC	GTC	GTC	ATC	CTT	GTA	ATC	CAG	G	
Smyd2- mouse	Forward	GGA	GGG	CCA	AAC	ACT	ACA	AA				
	Reverse	TGA	GGG	AGT	ACA	CGG	GGT	AG				
Smyd3- mouse	Forward	TGA	TGA	AAG	TTG	GCA	AGC	TG				
	Reverse	GTC	CTT	CTG	GGG	GTC	CTT	G				
Smyd4- mouse	Forward	CGA	ACC	GGT	AAA	CCA	GAG	CA				

	Reverse	ATG	GCG	AGT	TTC	AAC	CAC	СТ	
Smyd5- mouse	Forward	CTG	ATT	CGG	AAG	GGA	GAG	AC	
	Reverse	TTC	TGG	TGG	AGG	TCC	TTA	CG	
16S rRNA- mouse	Forward	CCG	CAA	GGG	AAA	GAT	GAA	AGA	С
	Reverse	TCG	TTT	GGT	TTC	GGG	GTT	ΤC	
ND1- mouse	Forward	CTA	GCA	GAA	ACA	AAC	CGG	GC	
	Reverse	CCG	GCT	GCG	TAT	TCT	ACG	ΤТ	
<i>Opa1-</i> mouse/rat	Forward	ATA	CTG	GGA	TCT	GCT	GTT	GG	
	Reverse	AAG	TCA	GGC	ACA	ATC	CAC	ΤТ	
Opa1 -1.0 kb	Forward	GGC	GGG	ACT	TGT	ATA	GTG	СТ	
	Reverse	CTC	CCG	GAA	TCC	TTA	ATG	GGG	
Opa1 0.1 kb	Forward	CCC	TCA	GCA	ACA	AGG	GCA	ТА	
	Reverse	ACG	TTA	TCC	GCG	GCA	CAT	ΤT	
Opa1 1.0 kb	Forward	TCG	CAG	ATG	TTG	TTG	CCC	ТА	
	Reverse	GTG	СТА	AGC	TTG	GGG	GCT	AT	
Intergenic region (rat)	Forward	ATT	TTG	TGC	TGC	ATA	ACC	TCC	Т
	Reverse	TAG	CAA	CAT	CCT	AAG	CTG	GAC	A
TBP - rat	Forward	GAA	GTT	TTG	CAC	CCC	ATC	CT	
	Reverse	CAG	GGG	CCA	ACT	GAA	AAC	AG	

50 µm

Fig. S1. **SMYD1a overexpression attenuates apoptotic cell death.** Apoptosis was detected by TUNEL assay in (**A**) cardiac tissue harvested 48h after PO (or Sham) surgery and in (**B**) H9c2 cardiomyoblasts that were overexpressing SMYD1a (by adenovirus) and subjected to hypoxic conditions. The results indicated significant decrease in apoptosis in TG PO mice when compared to WT PO group or in H9c2 cells overexpressing SMYD1a when compared to controls. DAPI staining shown in blue, cardiac troponin staining shown in red, TUNEL staining shown in GREEN and arrows point to TUNEL positive cells. Neg.Ctrl. indicates negative control and Pos.Ctrl. indicates positive control. Asterisk * indicates *p*<0.05, n=9-15.

Fig. S2. SMYD1a overexpression has no effect on angiogenesis in TG mice. A,**B**) Markers of angiogenesis **A**) *Vegfa* and **B**) *Fgf-2* were measured by qRT-PCR and values expressed as relative mRNA intensities relative to WT control mice. n=4-6.

Fig. S3. SMYD1a overexpression has no effect on expression of SMYD family members. A) SMYD family members: *Smyd2, Smyd3, Smyd4* and *Smyd5* were measured by qRT-PCR and values expressed as relative mRNA intensities relative to WT control mice. Asterisk * indicates p<0.05 to sham control, n=4-6. B) As indicated by western blotting, overexpression of SMYD1a or permanent occlusion (PO) had no effect on levels of SMYD2, SMYD4 and p53, however there is a significant increase in HSP90 in TG Sham group as compared to WT controls. Asterisk * indicates p<0.05, n=3-4.

Fig. S4. **Basal expression of SMYD1a in cardiac tissue and H9c2 cardiomyoblasts.** Expression at both the transcript (**A**) and protein (**B**,**C**) levels shows that SMYD1's basal expression is much higher in cardiac tissue as compared to H9c2 cardiomyoblasts. **D**,**E**) Adenovirus mediated increasing overexpression of SMYD1a in H9c2 cells detected by western blotting and quantified. **F**) Cell Mito Stress test was conducted using a Seahorse Bioscience XFe96 analyzed by sequentially injecting 1mM oligomycin, 5mM FCCP, and 1mM rotenone+antymycin A inhibitors. H9c2 cardiomyoblasts were transduced with Ad-SMYD1a and oxygen consumption rates (OCR) were recorded and quantified in the presence of pyruvate as substrate. **G**) Quantitative analysis of mitochondrial OCR from H9c2 cells overexpressing SMYD1a indicates significant increases in respiration starting at MOI=50. Asterisk * indicates p<0.05, n=5-12.

Fig. S5. SMYD1a binds to the promoter of *Ppargc1* α and regulates its expression through histone H3K4me3 in isolated cells. A) Adenoviral transduction of NRVMs led to a robust SMYD1a expression, as confirmed by western blotting. B) Publicly available ChIP-Seq data for histone H3K4me3 at the *Ppargc1* α promoter were used to design primers to use in ChIP-qPCR for SMYD1a-FLAG and histone H3K4me3 in isolated NRVMs showing C) binding at the *Ppargc1* α promoter, which increases trimethylation of histone H3K4me3 under basal conditions. Asterisk * indicates *p*<0.05, n=2.

Fig. S6. **SMYD1a overexpression increases supercomplex formation in H9c2 cardiomyoblasts but knockdown of** *Smyd1* has no effect. Blue-native PAGE gel stained with Coomassie, evaluated for Complex I activity and quantified in H9c2 cardiomyoblasts 48h after A) adenovirus mediated overexpression of SMYD1a or B) si-RNA driven knockdown of *Smyd1*. Asterisk * indicates p<0.05, n=3.

Fig. S7. **Cardiac specific deletion of** *Smyd1***.** Mice fed tamoxifen diet for 3 weeks show nearly a complete loss of SMYD1 protein in the heart, as demonstrated by western blotting. WT – wild type, KO – *Smyd1* knockout. Asterisk * indicates p<0.05, n=3.

Fig. S8. SMYD1a overexpression induces mitochondrial calcium uptake but remains unchanged in hypoxic conditions. A) Representative images showing control and SMYD1a overexpressing H9c2 cardiomyoblasts stained with the mitochondrial Ca²⁺ sensor, XRhod1. B) Changes is mitochondrial Ca²⁺ levels following XRhod1 staining in control and SMYD1a overexpressing H9c2 cardiomyoblasts. Asterisk * indicates p<0.05, **** indicates p<0.0001, n=408-485. C) A representative calcium retention trace of control and SMYD1a overexpressing H9c2 cardiomyoblasts. Black arrows indicate 5mM Ca²⁺ injections. Mitochondrial viability was measured as $\Delta\Psi$ /TMRM fluorescence. The graph is representative of five experiments each with 5E-5 cells. D) Comparison of calcium retention before the triggering of an MPT event in control and SMYD1a overexpressing cells. Asterisk ** indicates p<0.01, n=3.

Fig. S9. Schematic diagram representing possible mechanisms by which SMYD1a could regulate gene expression. A) Canonically, SMYD1a activates transcription by trimethylation of histone H3 on lysine K4. B) However, based od data from other methyltransferases, it is possible that SMYD1a targets another histone PTM through which it regulates gene expression. C) In addition, SMYD1a could also regulate transcription by methylating other chromatin binding protein or D) through methyltransferase-independent mechanism, as a component of a chromatin binding complex. All of these four mechanisms have previously been shown to be utilized by methyltransferases to regulate gene expression.

Fig. S10. **Knockdown of** *Opa1*. si-RNA-mediated knockdown of *Opa1* in H9c2 cardiomyoblasts showed significantly reduced levels of mRNA expression evaluated by (**A**) qRT-PCR and OPA1 protein as determined by (**B**) western blot analysis. Asterisk * indicates p<0.05, n=3.