Supplemental Figures and Table

Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease


```
Figure S1
```

Figure S1. Induction of synaptic IR in primary neurons

a). Immunoblots probed with IRS2 antibody. b). Quantitation of IRS2 levels normalized to β -Actin. c). Representative images of primary hippocampal neurons immunolabeled with pan-AKT antibodies. Excitatory synapses were identified by Shank3 staining. Original pixel intensities from 0 to 255 are represented as a gradient lookup table. Scale bar is 10 µm. d). Scatter dot plot representing no differences in pan AKT immunofluorescence in the Shank3 mask. N-numbers (dendritic segments analyzed) from left to right. *n*=25 for condition 1; *n*= 28 for conditions 2 & 4; *n*=26 for condition 3. e, f). Representative immunoblots and analysis of immunoprecipitated PI3K γ normalized to the respective PI3K γ input. *n*=8 for condition 1 & 2; *n*=6 for condition 3. ***P*<0.01, **P*<0.05 versus control, by two-way ANOVA followed by Bonferroni's post hoc test. Two-tailed Student's t-test was used in panel (F). n.s. = non-significant.

Figure S2. Proteasomal degradation of IRS2 is not affected by neddylation

a-f). Representative immunoblots of total cell extracts from cortical neurons and the corresponding quantification. MG-132 (**a-c**) or MLN-4924 (**d-f**) were co-applied with insulin and TNF α for 24 h. Membranes were probed with antibodies directed against IRS2 or IRSp53. All blots were probed with β -Actin antibody for normalization. Quantification of the total IRS2 (**b**, *n*=7) reveals a significant increase of the total protein level upon MG-132 treatment without alterations in IRSp53 (**c**, *n*=7) protein levels normalized to β -Actin. **e**) MIn-4924 has no effect on the levels of IRS2 (*n*=6) and **e**) elevated levels of IRSp53 (*n*=6). **g-h**). MLN-4924 treatment had no effect on total AKT levels at synapses. Representative images of dendritic fragments of primary hippocampal neurons immunostained with a pan-AKT and Shank3 antibody (**g**). Original pixel intensities from 0 to 255 are represented as a gradient lookup table. **h**) Scatter dot plot representing no differences in pan AKT immunofluorescence in the Shank3 mask. Number of analyzed dendritic segments are depicted. *n*=18 for conditions 1 & 3; *n*= 16 for condition 2; *n*=17 for condition 4. Scale bar is 10 µm. ****P*<0.001, ***P*<0.01, **P*<0.05 versus control, by two-way ANOVA followed by Bonferroni's post hoc test. n.s.= non-significant.

Figure S3. CUL7 KD does not alter insulin signaling and A β 3(pE) application exacerbates IR

a-b). Stimulation of primary hippocampal neurons infected with AAV9-shRNA CUL7 and AAV9-scr shRNA with insulin for 15 minutes results in activation of AKT under control conditions without application of TNFa/Insulin for 24h. Representative confocal images of dendrites immunolabeled with antibodies directed against pAKT and Shank3. Scale bar is 5 μ m. **b**). Violin plot representing means of pAKT immunofluorescence at synaptic sites. ****P*<0.001 versus control, by two-way ANOVA followed by Bonferroni's post hoc. Data are presented as the mean ± S.E.M. N = number of spines detected by a Shank 3 mask. *n*= 1353 for condition 1; *n*= 1602 for condition 2; *n*= 994 for condition 3; *n*=1445 for condition 4. **c**). Representative immunoblots of total cortical cell extracts were processed with antibodies against pAKT, AKT, pIRS1 and IRS1. β-Actin was used as a loading control. **d**).

Quantitation of pAKT normalized to AKT levels (n=9). e-f). Mixed neuronal-glial cultures were treated for 24 h with insulin (100 nM) or A β 3(pE)-42 (500 nM) or both. After washing for 1 h with medium, cells were stimulated with insulin for 15 min. Western blot analysis and quantitation of total cortical cell extracts probed with antibodies directed against AKT, pAKT, IRS1, and pIRS1. β -Actin was used as a loading control for normalization. f). Quantitation of pAKT normalized to AKT levels (n=7), ***P<0.001, **P<0.01, *P<0.05 versus control, by two-way ANOVA followed by Bonferroni's post hoc test. g). Schematic of the experimental protocol where antibodies against TNF α were applied directly into the culture media for 24 hours. h). Representative immunoblots of total cortical cell extracts probed with antibodies against pAKT, AKT, pIRS1 and IRS1. Each blot was probed with a β -Actin antibody for normalization. i-j). Scatter dot plots show the quantitation of the pAKT/AKT (n=8), and pIRS1/IRS1 ratios (n=8). ***P<0.001, **P<0.01, *P<0.05 versus control, by two-way ANOVA followed by Tukey's multiple comparison test. n.s. = non-significant. Data are presented as the mean \pm S.E.M.

Figure S4

Figure S4. MetS induces neuronal cell loss, astro- and microglia activation in the hippocampal CA1 region of heterozygous TBA2.1 mice

a). Scatter dot plot of the body weight of mice fed with a RD or HFD determined at the beginning of the diet and before starting every experiment; n=8 for condition 1; n=10 for condition 2; n=12 for condition 3; n=10 for condition 4. +/+: wild-type; Tg: Transgene b). Time required for clearance of the blood sugar of mice fed with a RD or HFD. **c-e**). No differences were detected in serum insulin (**c**) for conditions 1,2 & 4 n=12; n=10 for

condition 3, glucose (d) and cholesterol (e) levels between wt and heterozygous TBA2.1 mice fed with a HFD. In both d and e, n=11 for condition 1; n=15 for condition 2; n=10 for condition 3; n=17 for condition 4. **f-j**). Representative images of coronals sections stained for Iba1, GFAP and NeuN (f). Scale bar is 100 µm. g-i). Quantitation of Iba1(g), GFAP(h) In both g and h. N = 20 for condition 1; n=26 for conditions 2 & 4; n=23 for condition 3. Quantification of NeuN positive cells (i) n=22 for condition 1; n=14 for condition 2; n=16for condition 3; n=17 for condition 4. j). Irrespective of the diet, TNF α levels in the cortex of heterozygous TBA2.1 mice is significantly higher compared to wt mice as determined from total lysates with ELISA (n=10). k-n). HFD results in decreased levels of IRS2 in the hippocampus and cortex of heterozygous TBA2.1 mice. IRS2 protein levels were assessed by immunoblots from the total hippocampal or cortical homogenates. β-Actin was used as loading control. I (n=9); n (n=10). ***P<0.001, **P<0.01, *P<0.05 versus control, by twoway ANOVA followed by Bonferroni's post hoc test. o, p). Immunoblot analysis of stimulated with insulin synaptosomes isolated from cortices of wt and heterozygous TBA2.1 mice fed with HFD. Membranes were probed with antibodies detecting pInsR (Tyr1150), InsR, and PSD95. Scatter dot plot shows the quantitation of pInsR/InsR ratio (n=6). *P<0.05versus control, by two-way ANOVA followed by Bonferroni's post hoc test. q, r). Representative immunoblots and quantitation of PSD95/β-tubulin ratios indicating similarities in synaptosome preparation between different genotypes fed with a RD and HFD. Synaptosomes isolated from cortices underwent in vitro insulin stimulation for 15 min. Stimulated and non-stimulated synaptosomes preparations were loaded onto SDS-PAGE as well as the crude membrane fraction (P2-fraction). (n=6). ***P<0.001, versus control, by unpaired t-Test. n.s. = non-significant. Data are presented as mean \pm S.E.M.

Figure S5

Figure S5. Baseline recordings of fEPSP in hippocampal acute slices from wt and heterozygous TBA2.1 mice fed with a RD or HFD

a, **b**) The diet and the genotype did not affect the baseline fEPSP slope recorded by the second input on the same slice in which LTD was induced by the first input (see Fig. 5).

Figure S6

Figure S6. Characterization of the effects of MLN-4924 on basic metabolic parameters, basal fEPSP slope and LTD-dependent learning and memory in WT and heterozygous TBA2.1 mice fed with a RD or HFD

a). Body weight of heterozygous TBA2.1 fed with a HFD and treated either with vehicle or MLN-4924 was measured before and after the injection period of 14 days and the body weight mass is plotted in the scattered dot plot. n=10 for groups 1 & 3; n=11 for group 2; n=13 for group 4. b). A glucose tolerance test was performed after 6 h of fasting one day after the last injection with vehicle/MLN-4924. n=8 for group 1; n=9 for groups 2, 3 & 4. Quantitation of insulin (c) n=4 for groups 1 & 2; n=4 for group 3 and n=4 for group 4. Quantification of cholesterol (d), and glucose (e); in both d and e n=6 for group 2; n=4 for group 3; n=5 for group 3; and n=3 for group 4. Serum levels showed no significant differences between genotypes or drug treatment. n.s. = non-significant versus control, by two-way ANOVA of repeated measures followed by Bonferroni's post hoc test. f, g). MLN-4924 injection did not affect baseline fEPSP slope during LTD recording in wt and heterozygous TBA2.1 mice. h). Bath application of MLN-4924 did not affect baseline recordings of fEPSP slope during LTD recording in wt or heterozygous TBA2.1 animals fed with a RD. j, k). Bath application of MLN-4924 in hippocampal slices from wt or heterozygous TBA2.1 mice fed with a RD did not elicit alterations in plasticity. I). Averaged fEPSP slope values measured 180 -210 min after LTD induction showing no differences among the groups; n=8 for groups 1 & 2; n=8 for groups 3 & 4. m). Scatter dot plot shows no differences in the total distance walked during the habituation phase; n=12 for group 1; n=10for group 2; n=10 for group 3; n=8 for group 4. n.s.=non-significant versus control, by twoway ANOVA followed by Bonferroni's post hoc test. Data are presented as the mean \pm S.E.M.

RESOURCE	SOURCE	IDENTIFIER	Application		
DNA plasmids / constructs					
pCMV-IRS1-GFP	This paper, subcloned from pBlu2KSP- IRS1	RRID: Addgene_11027	Co-IP		
pCMV-IRS2-GFP	This paper, subcloned from pBABE- Puro-IRS2-Myc	RRID: Addgene_11373	Co-IP		
pAAV-CMV-GFP-P2A- CBD-6xHIS-IRS1	This paper	N/A	PD		
pcDNA3-myc3-CUL1	Ohta et. al., Mol Cell.1999, 3(4):535-41	RRID: Addgene_19896	Co-IP		
pcDNA3-myc3-CUL2	Ohta et. al., Mol Cell.1999, 3(4):535-41	RRID: Addgene_19892	Co-IP		
pcDNA3-myc-CUL3	Ohta et. al., Mol Cell.1999, 3(4):535-41	RRID: Addgene_19893	Co-IP		
pcDNA3-MYC3-CUL4A	Ohta et. al., Mol Cell.1999, 3(4):535-41	RRID: Addgene_19951	Co-IP		
pcDNA3-MYC3-CUL4B	Hu et. al., Genes Dev.2008, 22(7):886-871	RRID: Addgene_19922	Co-IP		
pcDNA3-myc-CUL 5	Ohta et. al., Mol Cell.1999, 3(4):535-41	RRID: Addgene_19895	Co-IP		
pcDNA3-myc-CUL 7	Andrews et al., Oncogene. 2006 25(33): 4534-4548	RRID: Addgene_20695	Co-IP		
pAAV-CMV-HA-NEDD8	This paper, subcloned from HA-NEDD8 (Kamitani et. al., JBC, 1997. 272(45): 28557-6) into pAAV-CMV	RRID: Addgene_18711 Agilent #240071	Co-IP		
pAAV-pCMV-HA	This paper	RRID: N/A	Co-IP		
CUL7 shRNA targeting sequence: 5'GATGAGATCTATGCC AACTG 3'	This paper	RRID: N/A Subcloned into RRID: Addgene, 92155	ICC		
scr LacZ shRNA targeting sequence: 5'AATTTAACCGCCAGT CAGGCT 3'	This paper	RRID: N/A Subcloned into RRID: Addgene_92155	ICC		

Supplementary Table S1. Expression constructs and antibodies used in this study.

Primary Antibodies					
anti-(pan) Akt (40D4)	Cell Signaling Technology	Cat.: #2920	ICC 1:500		
monoclonal mouse Ab		RRID: AB_11476220	WB 1:2000		
anti-phospho AKT/Ser473	Cell Signaling Technology	Cat.: #9271S	ICC1:150		
polyclonal rabbit Ab		RRID: AB_329826	WB 1:2000		
anti- human Amyloid beta	IBL International	Cat.: #10323	IHC 1:200		
(N) (82E1) monoclonal		RRID: AB_1630806			
mouse Ab					
anti-Aβ-pE3-218003	SySy	Cat.: #218003	IHC 1:200		
polyclonal rabbit Ab		RRID: AB_2056424			
anti-CUL7 (Ab38)	Sigma-Aldrich	Cat.: #C1743	WB 1:1000		

monoclonal mouse Ab		RRID: AB_796201	
anti-NEDD8	Proteintech	Cat.: #16777-1-AP	WB 1:2000
polyclonal rabbit Ab		RRID: AB 10598467	
anti-NeuN (A60)	Merk Millipore	Cat.: #MAB377	ICC 1:500
monoclonal mouse Ab	1	RRID: AB 2298772	
anti-PI3 Kinase p110y	Cell Signaling Technology	Cat.: #4252	WB 1:1000
polyclonal rabbit Ab		RRID: AB 329871	
anti-PI3K inase n110v	Cell Signaling Technology	Cat: #5405	endogenous IP
(D55D5)		RRID: AB 1904087	1.200
monoclonal rabbit Ab			1.200
anti-Ibal	SvSv	Cat : #234004	ICC 1·300
nolvelonal guinea nig Ab	5959	RRID: AB 2493179	100 1.500
anti-Homer1	SvSv	Cat: $\#160011$	ICC 1:500
monoclonal mouse Ab	5,57		100 1.500
anti phospho IGE 1	Call Signaling Technology	Cot: #3024	WP 1.1000
Becenter B	Cell Signaling Technology	DDID: AD 221252	WD 1.1000
$(T_{rm} 1125/1126)/I_{rm} and in$		KKID: AB_551255	
(1yr1135/1150)/insulin			
Receptor β (1yr1150-1151)			
(19h/) monoclonal rabbit			
Ab			NID 1 1000
anti-Insulin Receptor β	Cell Signaling Technology	Cat.: #3025	WB 1:1000
(4B8) monoclonal rabbit		RRID: AB_2280448	
Ab			
anti-IRS1 Rb	Merk Millipore	Cat.: #06-248	WB 1:500
		RRID: AB_2127890	
anti-IRS2 (9.5.2)	Merk Millipore	Cat.: #MABS15	WB 1:1000
monoclonal mouse Ab		RRID: AB_10615782	
anti-phospho-IRS1 /Ser	Cell Signaling Technology	Cat.: #3203	WB 1:1000
612 Rabbit monoclonal Ab		RRID: AB_1031167	
anti-IRSp53	Merk Millipore	Cat.: #07-786	WB 1:1000
polyclonal rabbit Ab		RRID: AB_612039	
anti-phospho-PKR /Thr451	Merk Millipore	Cat.: #07-886	WB 1:1000
polyclonal rabbit Ab		RRID: AB_568879	
anti-TNF-alpha	R&D system	Cat.: #AF-510-NA	TNF-alpha
polyclonal goat Ab		RRID: AB 354511	neutralization
		_	1:500
anti-mono- and	Enzo Life Science	Cat.: #BML-PW8810	WB 1:1000
polyubiquitinylated		RRID: AB 10541840	
conjugates (FK2)		—	
monoclonal mouse Ab			
anti-Shank3	SySy	Cat.: #162302	WB 1:1000
polyclonalrabbit Ab	5 5	RRID: AB2619862	ICC 1:500
anti-Shank3	SvSv	Cat.: #162304	ICC 1:500
polyclonal guinea pig Ab		RRID: AB2619863	
anti-PSD95(K28/43)	Neuromab	Cat: #75-028	WB 1:1000 ICC
monoclonal mouse Ab		RRID: AB 2292909	1:500
anti-beta-actin (AC-15)	Sigma	Cat.: #A-5441	WB 1:3000
monoclonal mouse Ab	0	RRID: 476744	
anti-GFAP	Sigma-Aldrich	Cat : #G-9269	IHC 1·400
nolvelonal rabbit Ab		RRID: AR 477035	
anti- $MAP2$ (AP20)	Millipore	$Cat \cdot \#M\Delta B3418$	ICC 1:500
monoclonal mouse Ab	minpore	$\mathbf{RRID} \cdot \mathbf{AR} 0.4856$	100 1.300
anti-MAP2 AlevaEluar 100	Millipore	$C_{at} \cdot \#MAB2/18v$	ICC 1:500
conjugated managlangl	141111pore	$\mathbf{PRID} \cdot \mathbf{AP11212066}$	100 1.300
conjugated monocional		KKID. AD11212900	

mouse Ab			
anti-Myc tag (9B11)	NEB/Cell Signaling	Cat.: #2276 S	WB 1:1000
monoclonal mouse Ab	Technology	RRID: AB 94856	
anti-HA	Roche	Cat.: #11867423001	WB 1:1000
monoclonal rat Ab		Cat#11867423001: RRID:	
		AB 390918	
anti-GFP Epitope Tag	BioLegend	Cat.: #902601	Heterologous
(B34)	8	RRID: AB 2565021	Co-IP. WB
monoclonal mouse Ab			1:1000
	Secondary Antibo	odies	
Goat anti-rabbit-AlexaFluor	Thermo Fisher Scientific	Cat · #A-11034	ICC/IHC
488		RRID: AB 25766217	1.500
Donkey anti-rabbit-	Molecular Probes	Cat: $#A_{-21206}$	ICC/IHC
AlexaEluor 488	Woleediar 1100es	RRID: AB 2535792	1.500
Goat anti rabbit AlevaEluor	Thermo Fisher Scientific	Cat: $#A 11036$	
568	Thermo Pisher Scientific	RRID: AR 10563566	1.500
Goot anti rabbit Cy5	Jackson Immuno Desearch	Cot: #111 175 144	
Goat-anti-faoon-Cy5	Jackson minuno Research	DDD AD 2228012	1.500
Goot anti rabbit AlavaEluar	Malagular Probas	Cot : #A 21070	
Goat-anti-fabolt-AlexaFluor	Molecular Flobes	Cal.: $#A-21070$ DDID: AD 2525721	1.500
Cost anti movas AlavaElvan	Thomas Eigher Scientific	Cot : #A 11001	
	Thermorisher Scientific	DDD: AD 2524060	1.500
400	Thomas Eigher Scientific	Cot + #A 11021	
	Thermorisher Scientific	Cal.: $#A-11031$	1.500
S08	There Eicher Seientifie	KRID: AB_144090	
Goat anti-mouse-AlexaFluor	I nermo Fisner Scientific	Cal.: #A-21230	1.500
04/	Mala sela su sala su	RRID: AB_2333803	
Donkey anti-mouse-	Molecular probes	Cat.: $\#A-315/1$	ICC/IHC 1.500
AlexaFluor 647	4.1	RRID: AB_162542	1:500
Goat Anti-guinea pig-	Abcam	Cat.: #Ab1/56/8	ICC/IHC
AlexaFluor405		RRID: 282755	1:500
Goat anti-guinea pig-	Molecular Probes	Cat.: #A-110/3	ICC 1:500
AlexaFluor 488		RRID: AB_2534117	
Goat anti-guinea pig-	Invitrogen	Cat.: #A-11075	ICC
AlexaFluor 568		RRID: AB_141954	1:500
Goat Anti-guinea pig-	Thermo Fisher Scientific	Cat.: #A-21450	ICC/IHC
AlexaFluor 647		RRID: AB_141882	1:500
Goat Anti-Rat IgG Ab, HRP	Sigma Aldrich	Cat.: #AP136P	WB 1:5000
conjugate		RRID: AB_11214444	
Goat Anti Mouse IgG Ab	Jackson Immuno Research	Cat.: #115-035-146	WB 1:20000
		RRID: AB_2307392_	
Goat Anti rabbit igG Ab	Jackson Immuno Research	Cat.: #115-035-144	WB 1:20000
		RRID: AB_2307391	