Supplementary Materials

Authors: Dun Jack Fu ${ }^{1}$ PhD; Veronika Lipkova ${ }^{1} \mathrm{MSc}$; Bart Liefers ${ }^{1,2} \mathrm{PhD}$; Sophie Glinton ${ }^{1} \mathrm{PhD}$, MSc; Livia Faes ${ }^{1}$ MD; Alex McKeown ${ }^{3}$ PhD; Lukas Scheibler ${ }^{3}$ PhD; Nikolas Pontikos ${ }^{1}$ PhD; Praveen J Patel ${ }^{1}$ MD FRCOphth;Gongyu Zhang ${ }^{1} \mathrm{MSc}$;Pearse A Keane ${ }^{1}$ MD FRCOphth; Konstantinos Balaskas ${ }^{1}$ MD

Affiliations:

${ }^{1}$ NIHR Biomedical Research Centre At Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
${ }^{2}$ Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
${ }^{3}$ Apellis Pharmaceuticals, Inc, Waltham, Massachusetts, United States

Corresponding Author:

Dun Jack Fu

Moorfield Eye Hospital

162 City Rd, London EC1V 2PD

Email: d.fu@nhs.net

Supplementary Table 1. Patient-level differences in GA.

FAF	RORA	PRD	PRD (isolated)	RPE loss
$(\mathrm{N}=144)$	$(\mathrm{N}=144)$	$(\mathrm{N}=144)$	$(\mathrm{N}=144)$	$(\mathrm{N}=144)$

Difference in area $\left(\mathrm{mm}^{2}\right)$

Mean (SD)	$3.30(2.87)$	$2.48(2.13)$	$2.98(2.72)$	$1.77(1.57)$	$2.60(2.20)$
Median	2.45	1.92	2.01	1.37	1.90
$[$ Min, Max $]$	$[0.0700,13.7]$	$[0.0378,11.1]$	$[0.0392,12.9]$	$[0.0686,8.32]$	$[0.00140,11.3]$

Supplemental Table 1. Difference in area by imaging modality. A table showing the mean $(S D)$ and the median [min, max] intra-person difference in area $\left(\mathrm{mm}^{2}\right)$. RORA $=$ RPE and outer retinal atrophy; PRD = photoreceptor degeneration; RPE = retinal pigment epithelium; PEOM = pegcetacoplan every other month; PM = pegcetacoplan monthly; FAF = fundus autofluorescence. $\mathrm{SD}=$ standard deviation.

Supplementary Table 2. Studies of bilateral GA concordance.

Type of imaging	Author (year)	Number of patients	Baseline area statistic	Value	Growth rate statistic	Value
CFP	Sunness et al $(2007)^{4}$	$\begin{aligned} & 131 \\ & (212 \text { eyes) } \end{aligned}$	Correlation coefficient**	0.81	Correlation coefficient	0.76
	Klein et al (2008) ${ }^{17}$	$\begin{aligned} & 31 \\ & \text { (42 pairs) } \end{aligned}$	Pearson correlation coefficient	0.87	Pearson correlation coefficient	0.85
	Lindblat et al $(2009)^{18}$	70			Intraclass correlation coefficient	0.88
FAF	Bellman et al (2002)*5	72 (144 eyes)	Correlation coefficient**	0.58		
			Wilcoxon signedrank test (95\% CI for mean difference between eyes)	$\begin{aligned} & \mathrm{P}=0.81 \\ & (-1.6 \text { to } 1.4) \end{aligned}$		
	Fleckenstein et al $(2010)^{3}$	$\begin{aligned} & 78 \\ & (156 \text { eyes }) \end{aligned}$	Spearman coefficient	$\begin{aligned} & 0.592 \\ & (\mathrm{P}<0.0001) \end{aligned}$	Spearman coefficient	0.74 ($\mathrm{P}<0.0001$)
			Concordance correlation coefficient	0.706	Concordance correlation coefficient	0.753
			Wilcoxon signed rank test	$\mathrm{P}=0.403$	Wilcoxon signed rank test	$\mathrm{P}=0.369$
					Absolute value	$0.42 \mathrm{~mm}^{2} /$ year
					Bland Altman mean difference	-0.084 mm²/year

[^0]

Supplemental Figure 1. CONSORT diagram. Figure depicting the selection of subjects for
the study. Pale purple depicts the original FILLY trial patient selection; dark purple
represents additional patient selection criteria and patient numbers used in this post hoc
analysis. Reproduced from Liao et al. ${ }^{10}$

A
Total area over time
SHAM Combined

B
Change from baseline in square root total area size

Supplemental Figure 2. Change in GA area from baseline. (A) The change in total area (mm^{2}) for study eyes (black dotted line) and fellow eyes (blue solid line) from each treatment arm are plotted over time with their corresponding confidence intervals at 6 and 12-month timepoints. This is shown by treatment arm (SHAM, PEOM and PM) and by imaging modality (FAF as well as OCT features [RORA, PRD, PRD (isolated), RPE-loss and intact macula]). (B) The square root change in total area (mm) for study eyes (black dotted line) and fellow eyes (blue solid line) from each treatment arm are plotted over time with their corresponding confidence intervals at 6 and 12 -month timepoints. This is shown by treatment arm imaging modality. GA = geographic atrophy; FAF = fundus autofluorescence; RORA $=$ RPE and outer retinal atrophy; PRD = photoreceptor degeneration; RPE = retinal pigment epithelium; PEOM $=$ pegcetacoplan every other month; PM = pegcetacoplan monthly.

[^0]: Supplemental Table 2. Studies of bilateral GA concordance. A table delineating key features of agreement between paired eyes in studies using CFP and FAF imaging. ${ }^{3-5,19,20}$ CFP $=$ colour fundus photography; FAF = fundus autofluorescence.
 *Bellman also observed no statistical difference for the number of lesions (focality) between paired eyes (Wilcoxon signed rank test $\mathrm{P}=0.62,95 \% \mathrm{Cl}:-1.3$ to 0.8 ; correlation coefficient $r=0.56$)

