Online Supplemental Materials

C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration

Stephanie May*, Daniel Hornburg*, Martin H. Schludi*, Thomas Arzberger, Kristin Rentzsch, Benjamin M. Schwenk, Friedrich A. Grässer, Kohji Mori, Elisabeth Kremmer, Julia BanzhafStrathmann, Matthias Mann, Felix Meissner, Dieter Edbauer ${ }^{\#}$

Includes:

Supplemental Figures S1-S10
Supplemental Table S1
Supplemental Methods (with sequence information)

A

ATG	synthetic GA_{149}	myc + flag
TAG	synthetic GA_{149}	myc+flag
ATG	synthetic GA_{149175}	GFP

ATG	GFP	synthetic GR_{149}	myc +HA
ATG	gggccg $_{80} \rightarrow \mathrm{GP}_{80}$	V5+His	
ATG	synthetic PA_{175}	myc	
ATG	synthetic PR_{175}		GFP
ggggcc $_{7-145}$			

B

C

Fig. S1: Expression system for specific DPR proteins. (A) Illustration of the DPR-expressing constructs for poly-GA, -GR, -GP, -PA and -PR used in this study. For better expression and detection all constructs contain an ATG start codon and epitope tags (GFP, myc, flag, V5 or His). Poly-GA, -GR, -PA and -PR are expressed from nearly GGGGCC-free synthetic genes. Poly-GP is expressed from the endogenous repeat sequence. The different construct design was necessary to overcome expression difficulties with some constructs. For example, $\mathrm{GR}_{149^{-}}$ GFP showed no detectable expression, while GFP-GR ${ }_{149}$ is expressed nicely. PA $_{175}$-GFP transfection resulted in expression of $\mathrm{PA}_{175}-\mathrm{GFP}$ and free GFP (presumably through internal initiation), which precludes analysis by immunofluorescence. Unfortunately, several attempts for gene synthesis of poly-GP failed and we had to resort to GGGGCC-based expression. For control experiments a TAG-GA 149-myc construct and several GGGGCC repeat constructs $^{\text {G }}$ lacking ATG start codons were used. (B) Cell viability of HEK293 cells transfected with

GGGGCC-repeat expressing constructs of increasing length (lacking an ATG start codon) was measured by XTT assay on day 3 . No significant toxicity compared to an empty vector control (Ctrl) was observed (one-way ANOVA, Dunett's post-test). (C) HEK293 cells were transfected with the five different poly-DPR constructs $\left(\mathrm{GA}_{175}-\mathrm{GFP}, \mathrm{GFP}-\mathrm{GR}_{149}, \mathrm{GP}_{80}-\mathrm{V} 5, \mathrm{PA}_{175}-\mathrm{myc}\right.$ and PR_{175}-GFP) or GFP as in Figure 1. Immunoblotting with indicated antibodies shows expression of DPR species and control GFP in transfected HEK293 cells. GA 1_{175}-GFP, GFP-GR ${ }_{149}$, PA $_{175}$ myc and PR_{175}-GFP are detected at the top of the gel (arrow). p62 is upregulated in poly-GA expressing cells. β-actin was used as a loading control.

Fig. S2: DPR proteins differentially aggregate in HEK293 cells without inducing cell death.
HEK293 cells were transfected with GFP, GA 175 GFP, GFP-GR $149, \mathrm{GP}_{80}-\mathrm{V} 5, \mathrm{PA}_{175}-\mathrm{myc}$ and PR_{175}-GFP or empty vector as control for 3 days. (A) A fraction of nuclear GA_{175}-GFP inclusions (magenta arrows) is p62-positive. Scale bar $5 \mu \mathrm{~m}$. (B) Immunofluorescence analysis as in Figure 1 shows that myc and V5 antibodies are specific. Scale bar $15 \mu \mathrm{~m}$. (C) LDH release assay detects no significant toxic effect upon DPR expression compared to GFP control in HEK293 cells. Treatment with $1 \mu \mathrm{M}$ Staurosporine was used as a positive control. $\mathrm{n}=3$ experiments with 10 replicates each; mean \pm SD, *** $p<0.001$ in one-way ANOVA with Dunett's post-test. (D) Filter trap assay for detection of insoluble protein in HEK293 homogenates containing 2\% SDS. Immunodetection with anti-GFP. Aggregation of $\mathrm{PA}_{175}-\mathrm{myc}$ and $\mathrm{GP}_{80}-\mathrm{V} 5$ was not detectable with anti-PA and anti-V5 (not shown).

Fig. S3: Lentiviral poly-GA expression levels in primary neurons are comparable to C9orf72 patients.
Immunostaining of primary cortical neurons transduced with $\mathrm{GA}_{149}-$ myc (DIV6+17) and a thin smear of cortical tissue (superior frontal gyrus from patient C9-1) under identical conditions with poly-GA antibodies. In the in vitro system a larger fraction of cells shows poly-GA inclusions than in patient brain (A) Scale bar depicts $20 \mu \mathrm{~m}$. The poly-GA aggregates have similar size in both settings, but the integrated intensity of poly-GA staining is about two-fold higher in the inclusions in patients. Poly-GA aggregate area and intensity was manually quantified for 50 inclusions of each condition with ImageJ. Mean \pm SD, Student's t-test, *** $p<0.001$ (B). Thus, lentiviral transduction might even underestimate poly-GA toxicity.

Fig. S4: TUNEL assays detects neuronal apoptosis upon poly-GA expression.
Primary hippocampal neurons transduced with GA $_{149}-m y c$ or empty vector (DIV6+17). TUNEL assay reveals apoptotic DNA fragmentation. Co-staining for poly-GA and nuclei. GA 149 -myc transduces neurons show ~2.5 fold increased apoptosis (arrow). Quantification is shown in Figure 3C.

Fig. S5: Immunoprecipitation of poly-GA aggregates for LC-MS/MS analysis
(A) Primary cortical neurons (DIV6+17) transduced with either GFP or GA 149-GFP lentivirus and subjected to anti-GFP immunoprecipitation. Samples were used for quantitative mass spectrometry analysis (see Figure 4A and Table 1). Immunoblotting with anti-GFP confirms immunoprecipitation of GFP and GA $_{149}$-GFP (arrowheads). Asterisks indicated immunoglobulin heavy and light chain. Arrow indicates top of gel. (B) Expression of GA 175 -GFP did not affect the
chymotrypsin-like, trypsin-like and caspase-like protease activity of the proteasome in HEK293 cells compared to GFP control ($n=3$ experiments with 6 replicates each, mean \pm SD, no significant change in one-way ANOVA). The proteasome inhibitor epoxomycine ($8 \mu \mathrm{M}, 2$ hours) significantly blocks proteasome activity in GFP-transfected cells (one-way ANOVA with Tukey's post-test, *** $p<0.001$; ** $\mathrm{p}<0.01$). (C) Expression of proteasomal subunits (PSMC2, PSMC4) was not affected by expression of DPRs in HEK293 cells $\left(\mathrm{GA}_{175}\right.$-GFP, GFP-GR ${ }_{149}, \mathrm{GP}_{80}-\mathrm{V} 5$, PA_{175}-myc and PR_{175}-GFP). (D) Expression of proteasomal subunits (PSMC2; PSMC4) was unchanged in $\mathrm{GA}_{149}-\mathrm{myc}$ transduced cortical neurons compared to GFP transduced controls. Three separate transductions are shown (DIV6+17). (E) Coimmunoprecipitation of Unc119 and poly-GA. HEK293 cells cotransfected with HA-Unc119 and GA 175 $^{-G F P}$ or GA $_{149}-$ myc for 3 days. The poly-GA proteins were immunoprecipitated with GFP or myc antibodies. Note that in freshly prepared protein extracts monomeric poly-GA can be resolved when directly loaded (asterisks). Aggregated poly-GA is stuck at the top of the gel (arrow).

GA175-GFP

GA175-GFP
+ HA-Unc119

Fig. S6: Unc119 co-aggregates with poly-GA in HEK293 cells.
Immunofluorescence of HEK293 cells co-transfected with GFP or GA 175 -GFP and HA-Unc119 or empty vector. GFP fluorescence, anti-HA immunostaining and DAPI as nuclear marker. Compare the HA-Unc119 localization in column 2 and 4. Many GA ${ }_{175}$-GFP inclusions show coaggregation of HA-Unc119 (examples marked with arrows). This figure shows separate channels of the images shown in Figure 4B.

Fig. S7: Unc119 antibodies \#1 and \#2 are specific.
(A) Unc119 antibodies \#1 and \#2 detect rat and human HA-Unc119 overexpressed in HEK293 cells. Note that HEK293 cells show very little endogenous Unc119. (B-E) Primary cortical neurons were transduced with a shRNA targeting Unc119 or a control shRNA (DIV7+10). (B) RT-qPCR shows efficient reduction of Unc119 mRNA normalized to the reference gene GAPDH. mean \pm SEM. $\mathrm{N}=3 . \mathrm{p}<0.001$ in Student's t-test. (C) Two Unc119 antibodies (\#1 and \#2) show reduced Unc119 protein levels upon Unc119 shRNA transduction compared to controls in immunoblots. Two separate transductions are loaded. (D, E) Both antibodies detect reduced Unc119 protein levels by immunostaining. tagRFP co-expressed from the shRNA lentivirus shows high transduction efficiency. Scale bars represent $20 \mu \mathrm{~m}$.

Fig. S8: Unc119 neuronal cytoplasmic inclusions in C9orf72 patients.
(A-C) Immunohistochemistry for Unc119 in three C9orf72 mutation carriers (C9-1, C9-2 and C93) and a control case (Ctrl-2) using Unc119\#2 antibody. In mutations carriers Unc119-positive cytoplasmic inclusions are detectable in large neurons in the superior frontal gyrus (SFG) (A) and the dentate gyrus region of the hippocampus (B). No Unc119 inclusions are found in a healthy control (C). (D) Using antibody Unc119\#1 no inclusions are seen in hippocampal cornu ammonis regions $3 / 4$ (CA3/4), in the superior frontal gyrus (SFG), the dentate gyrus (DG) as well as in the cerebellar (CBL) granular cell layer of control cases (Ctrl-2 and 3). Counterstains were done with haemalum. Scale bars represent $10 \mu \mathrm{~m}$. Stainings shown in (A) and (B) confirm the findings seen for Unc119\#1 antibody (Figure 6).

B Unc119\#1 preincubated Unc119\#1 preincubated
with GST

Fig. S9: Antigen preincubation confirms specificity of Unc119 staining in patient material. (A) Immunoblots of HEK293 cells transfected with rat and human HA-Unc119 using antibodies Unc119\#1 and \#2. To confirm specificity Unc119 antibodies were preincubated with $25 \mu \mathrm{~g} / \mathrm{ml}$ native or denatured GST-Unc119 or denatured GST as a control. While specific Unc119\#2 signal is best blocked with denatured GST-Unc119, the Unc119\#1 antibody is best blocked with native GST-Unc119, which may explain the better sensitivity of Unc119\#1 for immunohistochemistry. (B) Using the Unc119\#1 antibody preincubated with GST-Unc119 but not with GST alone abolishes the staining of cells and inclusions strongly indicating antibody specificity for immunohistochemistry as shown for the superior frontal gyrus (SFG) and the hippocampal dentate gyrus/cornu ammonis region 4 (DG/CA4) of a C9orf72 mutation carrier. Scale bars depict $10 \mu \mathrm{~m}$ for SFG and $30 \mu \mathrm{~m}$ for DG/CA4.

Fig. S10: Unc119 co-aggregation with poly-GA detected with second Unc119 antibody.
Double immunofluorescence analysis of Unc119 with poly-GA or phospho-TDP-43 in C9orf72 mutation cases C9-1 and C9-3. (A) In the superior frontal gyrus (SFG), a subset of poly-GA positive NCI also contains Unc119. (B) There is no co-localization of poly-GA and TDP-43 in the frontal cortex. Scale bars represent $10 \mu \mathrm{~m}$ in overviews and $5 \mu \mathrm{~m}$ in close ups. These staining confirm the findings with Unc119\#1 antibody (Figure 7).

Table S1 Clinical information of human brain samples

Case number	GGGGCC expansion	Gender	Clinical and neuropathological diagnosis	Age at death
Ctrl-1	-	female	control, no neurological or psychiatric disease	47
Ctrl-2	-	male	control, no neurological or psychiatric disease	60
Ctrl-3	-	female	control, no neurological or psychiatric disease	60
C9-1	+	female	FTD/ALS	65
C9-2	+	female	FTD/ALS	59
C9-3	+	female	ALS/beginning FTD	47
C9-4	+	male	FTD/Parkinson	65
C9-5	+	female	ALS	63

Supplemental Methods

Sequence of the open reading frames from the synthetic DPR expression constructs. The EGFP sequences is shown in green.

GA175-GFP

atgggagctggtgctggtgcaggcgctggggcaggggctggcgctggtgccggtgctggtgccggcgcagg cgctggtgctggtgctggtgctggggctggtgcaggcgcaggggctggtgcaggggcaggcgcaggcgctg gtgctggcgcaggggcaggcgctggggctggtgcaggcgctggtgctggcgctggtgcaggcgctggcgct ggtgctggcgctggcgcaggggcaggcgcaggcgcaggggctggtgctggtgccggtgcaggggctggggc tggtgctggtgctggcgcaggcgctggtgcaggcgctggggctggcgcaggggctggtgctggtgcaggcg ctggtgctggtgccggtgccggtgctggtgcaggggctggtgctggggctggggctggtgctggtgcaggg gcaggggctggtgctggtgcaggggctggtgccggtgctggtgcaggggcaggggcaggcgcaggcgctgg ggcaggcgctggtgcaggggcaggcgctggggcaggcgcaggcgcaggcgctggtgcaggggctggtgctg gtgcaggcgcaggcgcaggggctggggctggcgctggtgctggtgctggggctggcgctggtgccggtgcc ggtgcaggcgctggtgccggtgcaggggctggtgcaggcgctggtgctggtgcaggggctggtgctggtgc tggtgccggtgctggcgctggtgctggggcaggcgctggcgctggggcaggggcaggggctggcgctggtg ctggtgcaggcgcaggcgctggtgccggtgctggcgcaggcgctggtgctggtgcaggggctggcgcaggc gctggcgcaggggctggtgcaggcgctggtgccggggcaggcgcaggggctggtgctggtgctggtgctgg cgctggtgcaggggctggtgccggtgcaggcgctggtgcaggggctggggctggtgctggcgctggggctg gtgcaggggctggggcaggcgcaggggctggtgccggtgcaggcgcaggggcaggcgcacccatggtggct agaatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgt aaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagt tcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcag tgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgt ccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcg acaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaag ctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaa cttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacaccccca tcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagacccc aacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacga gctgtacaagtaa

GA149-myc

Atgggagctggcgcaggcgctggggcaggggctggcgccggtgccggcgcaggggcaggcgcaggggctgg ggctggggcaggcgctggcgctggcgcaggggctggggcaggcgcaggggcaggcgctggcgcaggggccg gcgccggggccggggcaggcgctggggcaggggcaggggctggcgcaggcgcaggcgctggggctggcgct ggcgcaggcgcaggcgcaggcgctggggcaggggctggggctggggccggcgccggggccggcgctggggc tggcgcaggcgctggcgccggggccggggccggcgcaggcgctggcgctggggcaggcgcaggggcagggg caggcgctggcgctggcgctggcgcaggggctggcgctggggctggggcaggggcaggggctggggctggc gctggggctggggctggcgctggcgcaggggcaggggctggggcaggggcaggcgcaggggccggcgccgg ggccggcgctggcgcaggggctggcgcaggcgctggggctggcgcaggcgcaggggcaggcgctggggctg gcgccggggccggggctggggccggcgccggggccggggcaggggcaggcgcaggcgcaggggcaggggca ggcgcaggggctggcgcaggggcaggggccggcgccggggccggcgcaggggccggcgccggggccggggc cggggctggggctggggctggcgcaggggcaggcgcaggggctggcgcaggcgctggcgcaggggcaggcg caggcgcaggcgcaggggct $9 g g g c t g g c g c a g g c g c c g g g g c c g g g g c t g g c g c t g g c g c a g g c g c t g g g$ gcaggcgcaggcgctggggctggggcaggggctggcgctggggcttggagtggcagagctagaggaagggc tagaggcggcgctgctgtggctgtgcctgctccagctgctgctgaagctcaggctgtggccagcggctcta gaagcgcttggagccacccccagttcgagaagctggaagaacagaagctgatctccgaagaggacctgggc agcgactacaaggacgacgacgacaaatga

GFP-GR149

atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaa cggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttca tctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgc ttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtcca ggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgaca ccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctg gagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaactt caagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcg gcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaac gagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagct gtacaagaagcttgccaccatgggacgcggccgcggaagaggcagaggaagggggaggggcagggggcgag gcaggggacggggacgaggaagagggcgcggacgggggagaggacggggcaggggaagaggaaggggcaga ggccgcggaaggggaagggggagaggaagaggacgaggaagaggccgaggcaggggcagagggcgagggcg aggaaggggaagaggcagaggacgcggccgaggccgaggacgcggaagaggaagaggccggggaagaggca ggggacgaggcagaggcaggggaaggggaagaggacggggacgggggcgaggcagaggaagaggccgagga agaggacggggaaggggacgcggacgaggcagggggagaggcaggggcaggggcagaggcagaggacgagg gcggggacgcggaaggggacgaggaaggggaaggggacgggggagggggaggggaagaggaagaggcaggg gcagaggacgcggcagagggcggggaagaggcagaggcagaggaagaggacgaggccgcggaagggggcga gggcggggacgaggacgcggacgcggcagaggaagaggcagaggccggggacgaggacgaggaaggggcag aggacgaggacgaggcagaggaagaggacgcggcagggggagaggacgaggacgcggacgaggacggggaa gaggaagggggagaggaaggggcagaggcaggggacgggggaggggccgaggacggggccgaggcaggggg cgaggaagaggaagaggaaggggacggggacggggcagaggccgaggccgcggacggggcaggggacgcgg aagaggacgcggcagaggcagaggaagaggaaggggaaggggcagaggaagggggagaggacgcggagtcg tgggagctggacctggcgcaggacctggaagaggatgtggctgtggcgcctgtgctagaggcggcggaggc gctgggggcggagaatgggtgtcagaggaagccgcctcttggagagtggccgtgtggggatctgccgctgg caagagaagaggctctagaagcgcctggtcccacccccagttcgagaagctcgaggaacagaagctgatct ccgaagaggacctgggcagctacccctacgacgtgccagactacgcctga

AP175-myc

atgcctgcccctgctccagctcctgcaccagcaccagctcccgctccagcgcctgctcctgcccccgcacc cgccccagcccctgcaccggcgcctgctccagctcccgctcctgctcccgctccagcaccggcccctgcac cagccccagcgccagctccggctccagctccagccccagctcctgcgccagctcctgctcctgctcctgcc cctgcgcctgctccagcaccagcccctgcccctgctcctgcaccggctccagctccagctcctgcgcctgc acccgcaccagcgccagcaccagcaccagctccagcccctgctccagcaccagcaccggcaccagctccgg caccagcaccagcgcctgcaccagctcccgctccagctcctgcaccagctccagcaccagcgcctgctcca gcaccagcgccagctccagctccagcacccgcaccagcaccagcaccagctcccgctcccgcaccagcccc tgctccggctccggctcctgctcctgctccggctcctgcaccagcccctgctccagctccagctccagcgc cagcaccagctccagctccggctccagctcctgctcctgcaccagcccccgcacccgcacccgcacccgct ccagcgcccgctcctgcaccagctccagcgcctgctccagctcctgcccctgctccagcccctgcccccgc tcctgcgcctgctcctgctccagctccagctcccgctcctgccccagccccagcaccagctccagcaccag cccctgcacccgcccctgcaccagcacccgctccagcaccagctccggctccagcacccgctccagctcca gcaccagcacccgcccctgctccagctccagcccctgctccggctcctgctcccgcaccggcacccgctcc agctccagctcctgctcctgctcctgctccagcacccgctcccgcaccggcgccagcccctgctcctgccc cagctccagctcctgcgccggctccagcgcctgcaccagcaccggcaccagcccctgctagcgaacagaag ctgatcagcgaagaggacctctga

Abstract

PR175-GFP atgcccagacccagacctagaccaaggcctaggccaagacctcgccctcgaccaagacctcgtccaagacc tagacctagacccagaccacgccctagacctcgaccacgtcctaggcctagaccaagaccaagaccccgac caaggccacgtcctagaccacgtcccagaccaaggccaagacctagaccaagaccgaggcccaggcctaga cctcgacctagacctagaccaagacctcggccccgtccacgaccaagaccaagacctagacctaggccacg acccagacctcgtcctcgtcctagaccaagacctaggcctcgacctaggccaaggcctcgtccaagaccaa gaccaaggccacgcccacgtcctagacctaggcctagacctcgtccacggccacgacctagacctcgacca agaccaagacccaggccaagaccaagaccacggcctagaccacgacctaggccacgtccaagaccccgacc tagaccaagacccagacctcgaccacgcccaagacctaggcctcgtcccagacctagacccagaccaagac ccagaccccgtccaagacctaggccaaggccaaggcctagacccaggcctagaccacgtcctcgtcctaga cctcggcctaggccaagacctagacctcgtcctagaccgcggcctcgacctagacccagacctagacctag acctcgcccaaggccacgtccaaggcccagaccacgtcctagaccaagacctcgccctaggccaaggccaa gaccacgaccaagacctcggcctagaccccgtccaagaccaagacctcgaccaagaccaaggcctcgccct agaccacgaccacgaccccgtcctaggcccagacctaggccaagaccacgacctaggcctagacccagacc caggcctagaccaagacctcgaccacggcctagaccccgaccaagacccaggcctagacctagaccaaggc caagaccccgccctagacctagacctagacctaggcctcggcctagacctcggccagctagaatggtgagc aagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaa gttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcacca ccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgc taccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcac catcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtga accgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaac tacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccg ccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggcc ccgtgctgctgcccgacaaccactacctgagcacccagtccgccetgagcaaagaccccaacgagaagcgc gatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagta a

