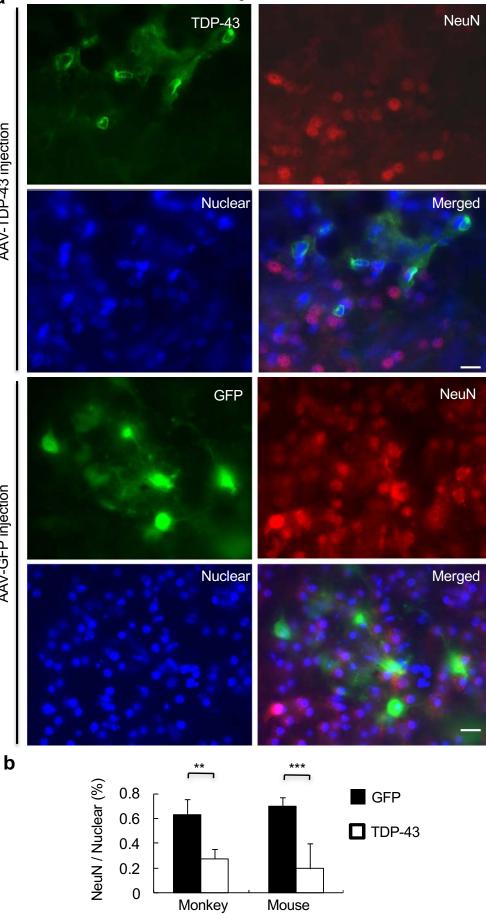





Supplemental Fig. 1 Reduced movements and upper limb grasping in monkeys injected with AAV-TDP-43 in the right side of the substantia nigra. The scores of walking around (a) and using the left upper hand for taking food (b), and the frequency of grasping a rod (c). The animals were examined six times on the same day in different weeks after injection of AAV-TDP-43. AAV-GFP injection served as a control. A score of 3 indicates that the monkeys can freely walk around or take food using either the left or right hand; the score 2 indicates that monkeys had difficulty walking or grasping when the left hand was used, and frequently used the right hand to take food; The score 1 indicates that monkeys lost the support from the left hand when walking, and could not raise the left hand to take food or grasp the ceiling fence or a test rod.

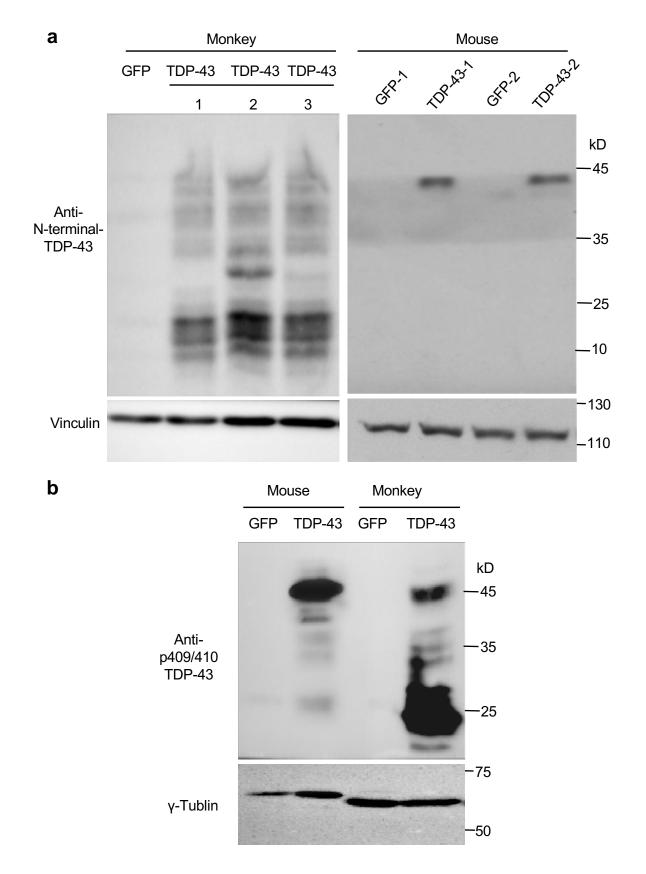



Supplemental Fig. 2 Reduced motor function in mice injected with AAV-TDP-43 in the right side of the substantia nigra. The body weight (a), rotarod performance (b), and balance beam test (c) were recorded at different days after injection. AAV-GFP injection served as a control (n=12 mice per group for AAV-GFP and TDP-43 injection, \*\*\* P<0.001).

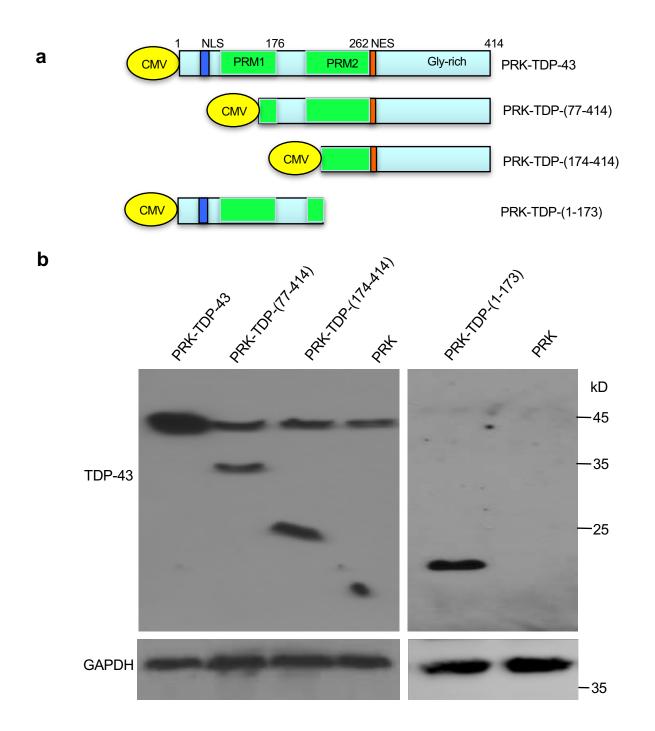


Supplemental Fig. 3 Immunostaining of the monkey substantial nigra injected with AAV-GFP. Control: non-injection side. The nuclei were stained with DAPI. Scale bar:  $10 \ \mu m$ .

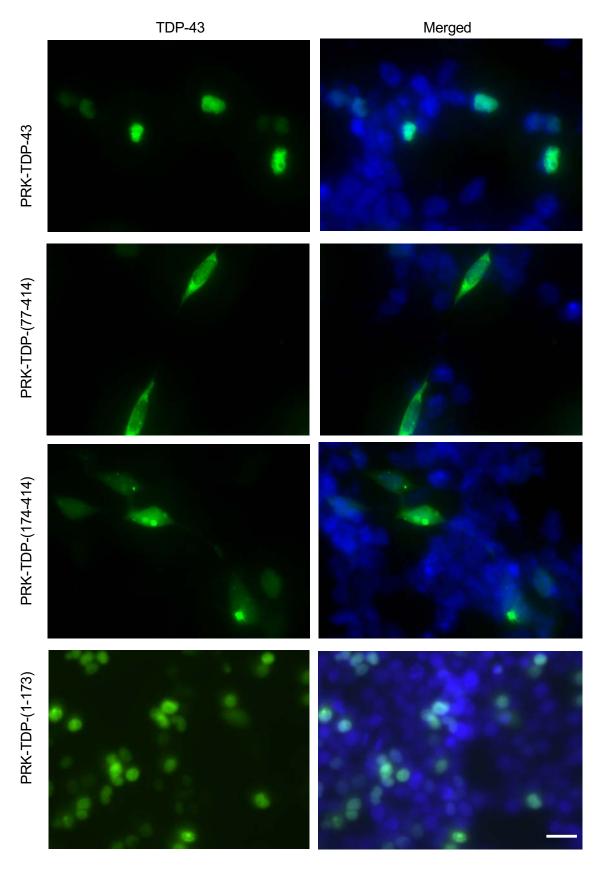
## а


## Double staining of TDP-43 and NeuN

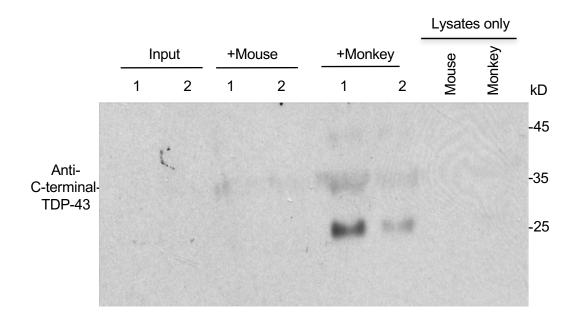



AAV-TDP-43 injection

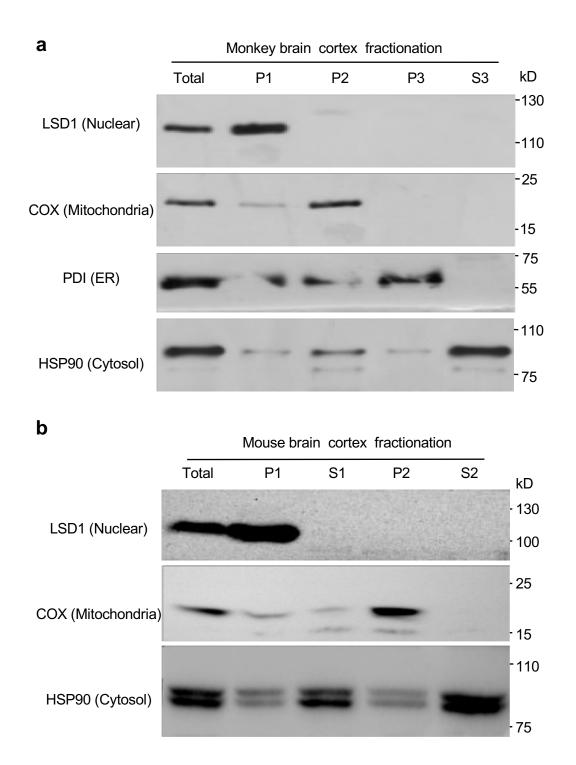
AAV-GFP injection


Supplemental Fig. 4 Double-immunostaining of monkey substantial nigra injected with AAV-TDP-43. a the injected monkey brain was injected using antibodies to TDP-43 and NeuN. The nuclei were stained with DAPI. Scale bars: 10  $\mu$ m. b Counting the relative number of NeuN-positive cells per image (40X lens) in the injected monkey or mouse striatum. The results were obtained by counting a total of 120 cells in random six images for each group.

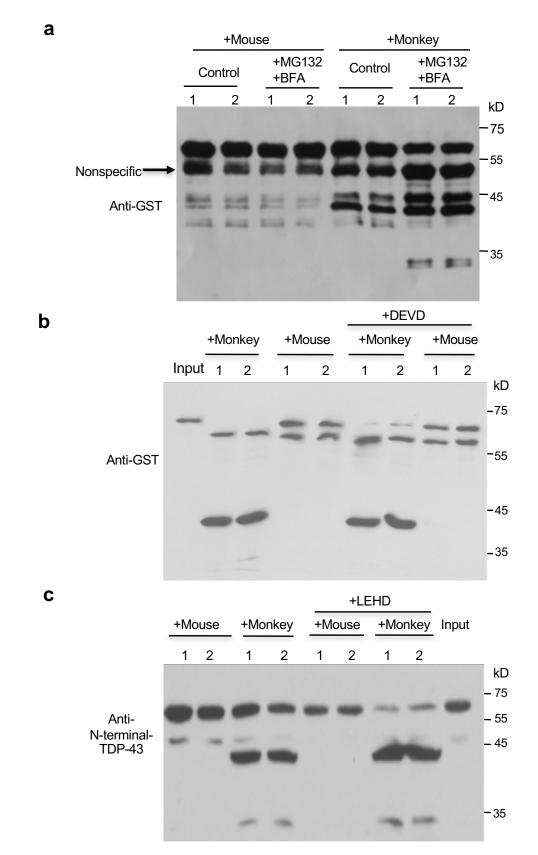



Supplemental Fig. 5 Detecting transgenic TDP-43 expression in the monkey and mouse brain with an antibody to N-terminal TDP-43. a Western blotting analysis of the brain substantial nigra tissues of several TDP-43 monkeys and mice that were injected with AAV-GFP or AAV-TDP-43. The blots were probed with the antibody to N-terminal-TDP-43 (1-261 amino acids). b Detection of phosphorylated TDP-43 using anti-p409/410 TDP-43 via western blotting. Note that the injected monkey substantial nigra tissues generated much more truncated TDP-43 than the injected mouse tissues.




**Supplemental Fig. 6 Generation of vectors expressing TDP-43 C-terminal or N-terminal fragments. a** The plasmid DNA structure for expressing full length TDP-43, truncated TDP-(77-414), C-terminal TDP-(174-414), or N-terminal TDP-(1-173) under the CMV promoter in PRK vector. **b** The expression of PRK-TDP-43, PRK-TDP-(77-414), PRK-TDP-(174-414) and PRK-TDP-(1-173) in transfected N2A cells was detected via western blotting.



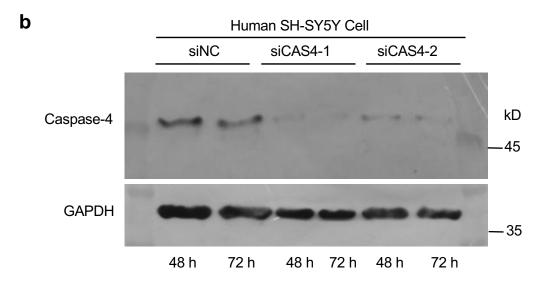

**Supplemental Fig. 7 Cellular localization of the different TDP-43 fragments**. Immunostaining of mouse N2A cells transfected with PRK-TDP-43, PRK-TDP-(77-414), PRK-TDP-(174-414) or PRK-TDP-(1-173) using antibodies that recognized N-terminal (1-261 amino acids) or C-terminal peptide corresponding to residues surrounding Gly400 of TDP-43. The nuclei were stained with DAPI. Scale bar: 10 µm.



Supplemental Fig. 8 Detecting C-terminal TDP-43 fragments generated by GST-TDP-43 in the *in vitro* caspase-4 cleavage assay. Western blotting analysis of GST-TDP-43(M337V) that was incubated with brain homogenate lysate from mouse or monkey brain striatum. The supernatant after precipitating GST-TDP-43 beads was detected by anti-C-terminal-TDP-43 via western blotting.



**Supplemental Fig. 9 Subcellular fractionation of the cortex of rhesus monkeys (a) and mice (b).** Western blotting with antibodies to different organelle marker proteins revealing P1, P2, P3 and S3 fractions, which are enriched in different subcellular marker proteins. LSD1: nuclear lysine-specific demethylase 1; COX: mitochondrial complex IV of cytochrome c oxidase subunits; PDI: protein disulfide isomerase in endoplasmic reticulum; HSP90: heat shock protein 90 in cytoplasm.




Supplemental Fig. 10 Inhibition of the UPS and autophagy did not prevent but increased the generation of fragmented TDP-43. a Western blotting analysis of cleaved TDP-43 fragments generated by the monkey brain lysates, MG132 (10  $\mu$ M) and BFA (5  $\mu$ g/ml) were added to the lysates for 16 h or during incubation, and this treatment increased the levels of cleaved TDP-43 by the monkey brain lysates. The blot was probed with antibody to N-terminal TDP-43. **b**, **c** *In vitro* cleavage assays of TDP-43 with caspase inhibitors. Western blotting analysis of GST-TDP-43(M337V) that was incubated with mouse or monkey brain striatal lysates. The caspase-3 and -7 inhibitor DEVD-fmk (**b**) or caspase-9 inhibitor LEHD-fmk (**c**) was added in the lysates but was unable to block the cleavage of TDP-43. Protein expression was detected by anti-GST or anti-N-terminal-TDP-43.

|                  | 5                            | 10           | 15 20                                   | 25                             | 30  |
|------------------|------------------------------|--------------|-----------------------------------------|--------------------------------|-----|
| Human caspase-4  | MAE GNHRK                    | KPLK         | V L E S L G K D F                       | L T G V L D N L                | V   |
| Monkey caspase-4 | MAE GNQRK                    | KPLK         | MLESLGKDF                               | L T G V L D N L                | V   |
| Mouse caspase-11 | МАЕNКНРС                     | KPLK         | V        L   E   Q   L   G   K   E   V  | ' L T E Y L E K L              | V   |
|                  | 35                           | 40           | 45 50                                   | 55                             | 60  |
| Human caspase-4  | EQNVLNWK                     | (EEEK        | к <mark>к</mark> үүр <mark>а</mark> кте | E D K V R V M A D              | S   |
| Monkey caspase-4 | EQNVLNWK                     | K E E E K    | к <mark>к</mark> үүр <mark>а</mark> кте | E D K V R V M A D              | S   |
| Mouse caspase-11 | QSNVLKLK                     | K E E D K    | Q                                       | , DKRWVFVD                     | Α   |
|                  | 65                           | 70           | 75 80                                   | 85                             | 90  |
| Human caspase-4  | M Q E <mark>K</mark> Q R M A | GQML         | LQTFFNIDO                               | QISPNKKAH                      | Р   |
| Monkey caspase-4 | I Q E <mark>K</mark> Q R M A | GQML         | L Q T F F N I D G                       | QISPSKKAH                      | L   |
| Mouse caspase-11 | <mark>мккк</mark> нѕк \      | / G E M L    | LQTFFSVDF                               | <sup>,</sup> G S H H G E A N   | L   |
|                  | 95                           | 100          | _                                       | 270 27                         | 75  |
| Human caspase-4  | N M E A G P P E              | SG.          | V                                       | V V R D <mark>S</mark> P A S L | Е   |
| Monkey caspase-4 | N M E A R P P E              | SG           | V                                       | V V R D S P A S L              | Е   |
| Mouse caspase-11 | EMEEPE                       |              | V                                       | VIRESSKPQ                      | ! L |
|                  | 280                          | 285          | 290 295                                 | 300 30                         | 05  |
| Human caspase-4  | VASSQSSE                     | NLEE         | D A V Y K T H V E                       | K D F I A F <mark>C</mark> S   | S   |
| Monkey caspase-4 | VASSQSPE                     | NLEE         | D A V Y K T H V E                       | K D F I A F <mark>C</mark> S   | S   |
| Mouse caspase-11 | CRGVDLPF                     | R N M E A    | D A V K L S H V E                       | K D F I A F <mark>Y</mark> S   | Т   |
|                  | 310                          | 315          | 320 325                                 | 330 33                         | 35  |
| Human caspase-4  | T P H N V S W F              | R D S T M    | G S I F I T <mark>Q</mark> L I          | T C F Q K Y S W                | V C |
| Monkey caspase-4 | T P H N V S W F              | r d s t M    | G S V F I T <mark>Q</mark> L I          | T C F Q K Y S W                | / C |
| Mouse caspase-11 | T P H H L S Y F              | R D K T G    | G S Y F I T R L I                       | S C F R K H A C                | S   |
|                  | 340                          | 345          | 350 355                                 | 360 36                         | 65  |
| Human caspase-4  | CHLEEVFF                     | <u>κν</u> αα | S F E T P R A K A                       | Q M P T I E R L                | S   |
| Monkey caspase-4 | CHLEEVFF                     | <u>κνα</u> α | S F E T P R A K A                       | Q M P T I E R L                | S   |
| Mouse caspase-11 | CHL FDI FL                   | KVQQ         | SFE <mark>KASIHS</mark>                 | G Q M P T I D R A              | T   |

Supplemental Fig. 11 Comparison of amino acid sequences of human caspase-4, monkey caspase-4, and mouse caspase-11.

| siRNA for caspase-4 | Target sequence         |  |  |  |
|---------------------|-------------------------|--|--|--|
| siCAS4-1            | GUGUAGAUGUAGAAGAGAAtt   |  |  |  |
| siCAS4-2            | AAGUGGCCUCUUCACAGUCAUtt |  |  |  |



**Supplemental Fig. 12 Suppressing endogenous caspase-4 via siRNA in human SH-SY5Y cells. a** The target sequences of siRNA to caspase-4. **b** Western blotting analysis of human SH-SY5Y cells transfected after 48 h or 72 h showing that knockdown of caspase-4 via siRNA (siCAS4-1 or siCAS4-2) decreased the expression of endogenous caspase-4. Control is a scramble siRNA (siNC).

а

| CASE    | Case Number | Frozen<br>Tissue<br>Provided | Paraffin<br>Sections<br>Provided | PMI (hr) | Age at<br>Onset | Age at<br>Death | Duration | ApoE | Race<br>/Sex |
|---------|-------------|------------------------------|----------------------------------|----------|-----------------|-----------------|----------|------|--------------|
| Control | E06-45      | F                            | F                                | 6.5      |                 | 46              |          | E3/3 | wf           |
| Control | E06-114     | F                            | F                                | 6.5      |                 | 53              |          | E4/4 | bm           |
| Control | E08-101     | F,sp cd                      | F,sp cd                          | 11.5     |                 | 78              |          | E3/3 | wf           |
| Control | E08-137     | F,sp cd                      | F,sp cd                          | 15.5     |                 | 92              |          | E3/3 | wf           |
| Control | E10-142     | F,sp cd                      | F,sp cd                          | 5.5      |                 | 94              |          | E3/3 | wm           |
| ALS     | E04-56      | F                            | F,sp cd                          | 9.5      | 70              | 71              | ~1       | E2/3 | wm           |
| ALS     | E08-86      | F                            | F,sp cd                          | 13       | 71              | 71              | 6 mos    | E3/3 | wm           |
| ALS     | E09-35      | F,sp cd                      | F,sp cd                          | 6        | 63              | 67              | 3.5      | E3/3 | wf           |
| ALS     | E11-75      | F,sp cd                      | F,sp cd                          | 11       | 66              | 68              | 2        | E3/3 | wm           |
| ALS     | E11-81      | F,sp cd                      | F,sp cd                          | 12       | 69              | 74              | 5        | E3/3 | wf           |

Supplemental Table S1 Postmortem brain tissues used for investigation