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Supplementary Table 1 Functional description of the genes located in the known AD risk loci. The name of the loci usually corresponds to the gene closest to the most 
significant genetic variant of the locus. Of note, it does not indicate that this gene is the AD functional gene of the locus. Information were manually curated from 
searches on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/ ) using the name of the gene and Alzheimer and/or neuron as keywords. 

Locus Gene General description Relation to Aβ/APP Relation to Tau Other features 

ABCA7 [19, 

50, 95, 108, 

138, 144, 

240] 

ABCA7 

ATP binding cassette subfamily A 

member 7, 

member of the ‘A’ subfamily of 

ATPbinding cassette transporters 

initially characterized by their capacity 

to transport lipids across membranes 

[134] 

- associated with plaque burden in AD 

brain [234]. Associated with Aβ 

deposition on in vivo imaging in 

human [13, 292]  

- regulates APP processing resulting in 

an inhibition of Aβ production in vitro 

and in vivo in APP/PS1 mice, ABCA7 

deletion facilitates the processing of 

APP to Aβ by increasing the levels of 

β-site APP cleaving enzyme 1 

(BACE1) [35, 214, 219]  

- stimulates phagocytosis in 

macrophages. ABCA7 loss results in 

50% reduction of oAβ uptake by bone 

marrow-derived macrophages. 

ABCA7 loss doubles insoluble Aβ  

levels in J20 amyloidogenic mouse 

brain [110, 133] 

- highly expressed in microglia. Its 

loss reduces microglia phagocytic 

clearance of amyloid-β [69] 

- associated with neurofibrillary tangle 

pathology in AD brain [287]  

- stimulates cellular cholesterol efflux 

to APOE discs [35]  

- ABCA7 rs3764650 associated with 

cortical and hippocampal atrophy in 

MCI [203]  

- genetic risk factor for posterior 

cortical atrophy (PCA), typically a rare 

variant of AD [221]  

- its loss-of-function variants are 

enriched in patients with AD [78]  

- Lysophosphatidylcholine is one of 

the major transport substrates for 

ABCA7 in the brain and this transport 

may be an important function of 

ABCA7 [254] 

ABI3 [108, 

237] 
ABI3 

ABI family member 3, 

adaptor protein with a homeobox 

homology domain, a proline rich 

region and a SH3 domain 

  

- highly expressed in microglia cells, 

coexpressed with INPP5D, important 

role in actin cytoskeleton organization 

through participation in the WAVE2 

complex, a complex that regulates 

multiple pathways leading to T cell 

activation [188, 222, 237] 

AC099552.4 

[25] 
AC099552.4 long non coding RNA 
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ACE [138] 

ACE 
Angiotensin I converting Enzyme, 

peptidase activity (reviewed in [127]) 

- ACE is an Aβ degrading enzyme [93, 

99, 192, 249, 255] 

 - ACE expression in AD brain tissue 

is associated with Aβ load and AD 

severity. Exposing SH-SY-5Y neurons 

to oAβ1-42 increases ACE level and 

activity, suggesting Abeta may 

upregulate ACE in AD [179]  

- CSF levels of the angiotensin-

converting enzyme (ACE) are 

associated with Aβ levels [115] and 

LOAD risk [126] 

- 
- in CSF, its levels but not activity is 

reduced in AD [179] 

CYB561 cytochrome b561   

TANC2 
tetratricopeptide repeat, ankyrin repeat 

and coiled-coil containing 2, 

synaptic scaffold protein 
  

- its overexpression in cultured 

neurons increases the density of 

dendritic spines and excitatory 

synapses [85]  

- involved in the capture of KIF1A-

driven dense core vesicle (DCV) at 

dendritic spines [244] 

ADAM10  

[108, 138] 
ADAM10 

the major α-secretase in the brain 

(reviewed in [213]) 

- component of the non-amyloidogenic 

pathway of APP metabolism (reviewed 

in [82]).  

- over-expression of ADAM10 in 

mouse models can halt Aβ production 

and subsequent aggregation [199].   

- two rare ADAM10 mutations 

segregating with disease in LOAD 

families increased Aβ plaque load in 

“Alzheimer-like” mice, with 

diminished α-secretase activity from 

the mutations likely the causal 

mechanism [130, 248] 

 

-numerous and fundamental functions 

in the development of the embryonic 

brain and also in the homeostasis of 

adult neuronal networks. 

Mechanistically, ADAM10 controls 

these functions by utilizing unique 

postsynaptic substrates in the central 

nervous system, in particular synaptic 

cell adhesion molecules (reviewed in 

[213]) 

- sheds TREM2 to release soluble 

TREM2 

ADAMTS1 

[138] 
ADAMTS1 

a disintegrin and metalloproteinase 

with thrombospondin motifs 1   

- manifold overexpressed in brain of 

AD patients [176] 

 - ADAMTS1 null female, but not 

male, exhibits a decline in synaptic 

protein levels [96] 
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ADAMTS4 

[108] 

ADAMTS4 
a disintegrin and metalloproteinase 

with thrombospondin motifs 4 

- generates N-truncated Aβ4-x species 

and marks oligodendrocytes as a 

source of amyloidogenic peptides in 

Alzheimer's disease [267] 

- could modulate Tau phosphorylation 

by cleaving Reelin (reviewed in [80]) 
  

B4GALT3 beta-1,4-galactosyltransferase 3  

PPOX protoporphyrinogen oxidase   

AKAP9 

[154] 
AKAP9 

A-kinase anchoring protein 9  

AKAPs bind or tether protein kinase A 

(PKA) and other signaling molecules 

to relevant targets [275] 

 

- AKAP9 mutations significantly 

increases pTau/Tau ratio in 

lymhoblastoid cell lines treated with 

phosphodiesterase-4 inhibitor 

rolipram, which activates protein 

kinase A [104] 

  

ALPK2 

[108] 
ALPK2 alpha kinase 2 

  
  

APH1B 

[108] 
APH1B aph-1 homolog B 

- subunit of the gamma-secretase 

complex that cleaves APP [224]  
  

APOE [46] APOE 

apolipoprotein E 

maintains the structure of specific 

lipoprotein particles and directs 

lipoproteins to specific cell surface 

receptors 

3 alleles/isoforms, ε2, ε3, ε4, the first 

and the last being protective and 

deleterious respectively for 

Alzheimer's disease 

- binding to Aβ  

- role in Aβ production  

- role in Aβ aggregation  

- role in Aβ degradation and clearance 

(reviewed in [103]) 

- ApoE affects tau pathogenesis, 

neuroinflammation, and tau-mediated 

neurodegeneration independently of 

amyloid-β pathology [233] 

- hypothesized to influence all the 

hallmarks of AD, from APP/Aβ to Tau 

aspects through lipid metabolism and 

neuroinflammation (reviewed in [243, 

259]) 

BHMG1 / 

FBX046 

[108] 

BHMG1 
basic helix-loop-helix and HMG-box 

containing 1   
  

FBXO46 
F-box protein 46, protein ubiquitin 

ligase   
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BIN1 [108, 

138, 144, 

184, 225] 

BIN1 

bridging integrator 1, 

nucleocytoplasmic adaptor protein 

involved in endocytosis and membrane 

recycling, cytoskeleton regulation, 

DNA repair, cell cycle progression, 

and apoptosis [201] 

- BIN1 depletion increases Aβ 

production through a decreased 

lysosomal BACE1 degradation  [180]  

- BIN1 depletion raises Aβ generation 

in axons by a defective BACE1 

recycling to the membrane and 

increased BACE1 convergence with 

APP in early endosomes  [260] 

- BIN1 is found insoluble and 

accumulated in proximity to amyloid 

fibrils at the edges of amyloid 

deposits, suggesting a potential role for 

BIN1 in extracellular Aβ deposition in 

vivo [210]  

-the functional risk allele (rs59335482) 

is associated with Tau loads in the 

brains of AD patients [37].  

- loss of its Drosophila ortholog 

rescues Tau toxicity in Drosophila [37, 

58]  

- BIN1 SH3 domain interacts 

physically with Tau Proline-Rich 

domain and the interaction is regulated 

by Tau and BIN1 phosphorylation and 

an isoform-dependent BIN1 

intramolecular folding [37, 163, 217, 

239].  

- lower BIN1 levels promote the 

propagation of Tau pathology by 

increasing aggregate internalization 

through regulation of endocytosis and 

endosomal trafficking [30]  

- stabilizes Tau-induced actin bundles, 

loss of Drosophila BIN1 reduces tau-

induced actin inclusions in Drosophila 

[60]. 

- Overexpression in mice results in 

neurodegeneration, loss of spine 

density, impaired LTP and behavioral 

deficits [52] 

-interacts with integrin α3A in double 

hybrid screen and with the Focal 

Adhesion Kinase (FAK) [175, 273]  

- physically interacts with intracellular 

form of CLU [299] 

CASS4 [108, 

138, 144] 

CASS4 

Cas scaffold protein family member 4, 

member of the CASS Scaffolding 

protein localized at focal adhesions, 

regulates cell spreading and motility 

[238] 

 

- Its Drosophila ortholog modifies 

human Tau toxicity in Drosophila [58]  

- associated with CSF Tau biomarker 

in AD patient [204] 

-physical interaction between the 

CASS and FAK family of protein [16] 

CSTF1 

cleavage stimulation factor (CSTF) 

subunit 1,  

CSTF is involved in the 

polyadenylation and 3'end cleavage of 

pre-mRNAs 

  
  

FAM209A 
family with sequence similarity 209 

member A   
  

FAM209B 
family with sequence similarity 209 

member B   
  

GCNT7 
glucosaminyl (N-acetyl) transferase 

family member 7   
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CASS4 

(cont’d) 
RTFDC1 

replication termination factor 2 domain 

containing 1   
  

CD2AP [95, 

108, 138, 

144, 184] 

CD2AP 

CD2 associated protein, 

scaffolding protein involved in the 

regulation of membrane receptor 

endocytosis and signaling,  actin 

cytoskeleton organization, endosomal 

vesicular trafficking, cell adhesion and 

cytokinesis [47, 61, 83, 116, 137, 157, 

291]  

-its loss-of-function raises Aβ 

generation in primary neuronal culture 

dendrite by increasing APP and its 

convergence with BACE1 in early 

endosomes but results in decreased 

cell membrane APP, decreased Aβ 

release and a lower Aβ42/Aβ40 ratio 

in N2a-APP695 cells. Complete loss of 

CD2AP results in a lower Aβ42/Aβ40 

ratio in PS1APP mouse brain lysate 

but loss of one copy of CD2AP does 

not modify Abeta deposition or 

accumulation in these mice [152, 260]  

- its Drosophila ortholog modifies 

human Tau toxicity in Drosophila 

[235]  

- associated with CSF Tau biomarker 

in AD patient [204] 

- decreased expression in peripheral 

blood lymphocytes from chinese 

sporadic AD patients [251]  

- physically interacts with p130CAS 

(CASS1), colocalizes with F-actin and 

p130Cas to membrane ruffles and 

leading edges of cells in vitro, 

regulates actin cytoskeleton [135]  

- coordinator of Neurotrophin 

Signaling-Mediated Axon Arbor 

Plasticity [91]  

- regulates the signaling of the 

Tyrosine kinase Ret receptor in 

neurons [258]  

- CD2AP-deficient mice have reduced 

blood-brain barrier integrity  [44]  

- recruited by RIN3 to RAB5a-positive 

early endosomes [211] 

GPR111 
adhesion G protein-coupled receptor 

F2   
  

GPR115 
adhesion G protein-coupled receptor 

F4   
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CD33 [95, 

108, 184] 
CD33 

transmembrane sialic acid-binding 

immunoglobulin-like lectin that 

regulates innate immunity  

- its expression is increased in 

microglial cells in AD brain and 

inhibits microglial uptake of Aβ, 

which correlates with increased Aβ42 

levels and plaque burden in AD patient 

brain [27, 77]  

- the AD-risk allele increases the full-

length CD33M isoform containing the 

Exon2, which inhibit Aβ uptake [162, 

202]. The protective CD33m isoform 

is localized in peroxisome and may be 

protective because it does not localize 

to the cell membrane and neither 

interact directly with amyloid plaques 

nor engage in cell-surface signaling 

[236] 

 
  

CELF1 / 

SPI1 [138, 

144] 

CELF1 

CUGBP Elav-like family member 1,  

role in RNA processing (splicing and 

mRNA stability mainly), role in 

myotonic dystrophy (reviewed in [70]) 

 

- its Drosophila ortholog, Aret, 

modifies Tau toxicity in Drosophila 

[22, 235] 

  

ACP2 

acid phosphatase 2, lysosomal. 

lysosomal membrane member of the 

histidine acid phosphatase family, 

which hydrolyze orthophosphoric 

monoesters to alcohol and phosphate 

  

- Acp2 mutant mice exhibit ataxia due 

to degeneration of cerebellum neurons 

exhibiting lysosomal storage bodies 

[165] 

AGBL2 ATP/GTP binding protein like 2 
  

  

C1QTNF4 C1q and TNF related 4   

DDB2 

damage specific DNA binding protein 

2, 

Protein that  is necessary for the repair 

of ultraviolet light-damaged DNA 

- oxidative stress generates a 

differential and specific DNA damage 

response involving overexpression of 

DDB2 in the presence of Aβ [67] 

 
  

FAM180B 
family with sequence similarity 180 

member B   
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CELF1 / 

SPI1 

(cont’d) 

FNBP4 

formin binding protein 4, 

protein containing two tryptophan-rich 

WW domains that binds the proline-

rich formin homology 1 domains of 

formin family proteins, suggesting a 

role in the regulation of cytoskeletal 

dynamics during cell division and 

migration 

  
  

KBTBD4 
kelch repeat and BTB domain 

containing 4   
  

MADD 

MAP kinase activating death domain, 

death domain-containing adaptor 

protein that interacts with the death 

domain of TNF-alpha receptor 1 to 

activate mitogen-activated protein 

kinase (MAPK) and regulate apoptosis 

- change in MADD splice variants 

upon Aβ treatment, which could be 

protective [181] 

- loss of its Drosophila ortholog 

enhances Tau toxicity in Drosophila 

[58]  

- reduced expression and protein levels 

in the hippocampus of AD patients. 

MADD antisense treatment of cultured 

rat hippocampal neurons promoted 

neuronal cell death, suggesting a 

protective role of MADD in AD [265]. 

MIR4487 microRNA 4487 
  

  

MTCH2 

mitochondrial carrier 2, 

member of the SLC25 family of 

nuclear-encoded transporters that are 

localized in the inner mitochondrial 

membrane 

  

- loss of forebrain MTCH2 in mice 

decreases mitochondria motility and 

calcium handling and impairs 

hippocampal-dependent cognitive 

functions [6, 212] 

MYBPC3 
myosin binding protein C, cardiac. 

cardiac isoform of myosin-binding 

protein C 
  

  

NDUFS3 

NADH:ubiquinone oxidoreductase 

core subunit S3, 

one of the iron-sulfur protein (IP) 

components of mitochondrial 

NADH:ubiquinone oxidoreductase 

(complex I) 

-RNA interference knockdown of the 

C. elegans ortholog of NDUFS3 is 

associated with Aβ toxicity [183] 
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CELF1 / 

SPI1 

(cont’d) 

 

NR1H3 

nuclear receptor subfamily 1 group H 

member 3. Also known as liver X 

receptor α (LXRA), 

member of the NR1 subfamily of the 

nuclear receptor superfamily, which 

are key regulators of macrophage 

function. Role in cholesterol 

metabolism and inflammation 

(reviewed in [31]) 

- genetic loss of either Lxrα or Lxrβ in 

APP/PS1 mice results in increased 

amyloid plaque load. Ligand activation 

of LXRs attenuates the inflammatory 

response of primary mixed glial 

cultures to fibrillar Aβ (fAβ) in a 

receptor-dependent manner and LXRs 

promote the capacity of microglia to 

maintain fAβ-stimulated phagocytosis 

in the setting of inflammation [288] 

 

- involvment in cholesterol efflux in 

astrocytes [1] 

NUP160 

Nucleoporin 160, 

one of the proteins that make up the 

120-MD nuclear pore complex, which 

mediates nucleoplasmic transport 

  

- the protective AD-associated rs9909-

C allele in the 3'-UTR of NUP160  

abolishes a miR target site and 

increases NUP160 expression, 

suggesting that increased expression of 

NUP160 might protect against the 

disease [53] 

PACSIN3 

protein kinase C and casein kinase 

substrate in neurons 3, 

 member of the PACSIN family of 

proteins involved in synaptic vesicular 

membrane trafficking and endocytosis 

[51] 

  
  

PSMC3 proteasome 26S subunit, ATPase 3 
  

  

PTPMT1 
protein tyrosine phosphatase, 

mitochondrial 1   
  

RAPSN 

receptor associated protein of the 

synapse, also known as RAPSYN, 

critical role in clustering and 

anchoring nicotinic acetylcholine 

receptors at neuromuscular synaptic 

sites by linking the receptors to the 

underlying postsynaptic cytoskeleton, 

possibly by direct association with 

actin or spectrin. 

  
  

SLC39A13 
solute carrier family 39 member 13 

member of the LIV-1 subfamily of the 

ZIP transporter family 
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CELF1 / 

SPI1 

(cont’d) 

SPI1 

Spi-1 proto-oncogene, 

ETS-domain transcription factor that 

activates gene expression during 

myeloid and B-lymphoid cell 

development 

  

- the minor allele of rs1057233 (G) 

shows association with delayed AD 

onset and lowers expression of SPI1 in 

monocytes and macrophages. SPI1 

encodes PU.1, a transcription factor 

critical for myeloid cell development 

and function. Altered PU.1 levels 

affects the expression of mouse 

orthologs of many AD risk genes and 

the phagocytic activity of mouse 

microglial cells [100] 

LOC1019289

43 
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CLU [90, 

108, 138, 

143, 144, 

184] 

CLU 

Clusterin, 

multifunctional apolipoprotein (J) 

involved in lipid metabolism, 

inflammation, apoptosis, cell cycle 

(reviewed in [190, 272]) 

- increased expression and levels in 

AD [23, 171]  

- influences the regional distribution of 

Aβ [178]  

- Aβ increases intracellular clusterin 

and decreases clusterin protein 

secretion [128]  

- sequesters oAβ1−40 [185]  

- complex effect of CLU on 

extracellullar Aβ aggregation  
depending on APOE, CLU:Aβ ratio 

and mode of aggregation – nucleation 

or elongation  [17, 54, 55, 193, 284]: 

- suppresses the toxicity of Aβ42 

oligomers after they are formed in vivo 

[34]  

- mediates the clearance of Aβ from 

the brain by binding to LRP2/megalin 

receptor at the level of the blood-brain 

and blood-cerebrospinal barrier [18, 

84, 302]. Loss of clusterin shifts 

amyloid deposition to the 

cerebrovasculature via disruption of 

perivascular drainage pahtways [274]. 

- CLU regulates Aβ toxicity via 

Dickkopf-1-driven induction of the 

wnt-PCP-JNK pathway [128] 

- its rs11136000 SNP is associated 

with Tau CSF levels modification in 

AD patients [299]  

- its intracellular form physically 

interacts with Tau and BIN1 [299]  

- its intracellular form is upregulated in 

the brain of Tau overexpressing 

Tg4510 mice [299] 

- inhibition of the complement by 

binding to C5b-7 component [42]  

- its non-synonymous mutation 

reduces the secretion of its protein [24]  

- differentially expressed in the 

microglia of the 5xFAD mouse model 

[205] 

SCARA3 

scavenger receptor class A member 3,  

express  a macrophage scavenger 

receptor-like protein that would protect 

cells from oxidative stress 
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CNTNAP2 

[108] 
CNTNAP2 

contactin associated protein like 2, 

 encodes a member of the neurexin 

family which functions in the 

vertebrate nervous system as cell 

adhesion molecules and receptors 

  

- this protein is localized at the 

juxtaparanodes of myelinated axons, 

and mediates interactions between 

neurons and glia during nervous 

system development and is also 

involved in localization of potassium 

channels within differentiating axons. 

-  this gene has been implicated in 

multiple neurodevelopmental disorders 

CR1 [108, 

138, 143, 

144, 184] 

CR1 

complement C3b/C4b receptor 1 

(Knops blood group), 

member of the receptors of 

complement activation (RCA) family 

[301] 

- expressed on erythrocyte, clears Aβ 

from the blood by binding to 

circulating Aβ-C3b-complement 

component complexes [29, 208]  

- association of CR1 risk allele and 

amyloid plaque burden/Amyloid 

deposition by in vivo brain imaging 

[41, 300]  

- activation of microglial CR1 is 

detrimental to neurons and blockade of 

CR1 decreases the capacity of 

microglia to phagocytose Aβ1-42 [48] 

 

- decrease expression of the long CR1 

isoform, decrease CR1 density per 

erythrocyte and increased blood 

soluble CR1 in AD patients [159] 

ECHDC3 

[57, 108, 

119, 138, 

153] 

ECHDC3 
enoyl-CoA hydratase domain 

containing 3   

- increased expression in AD brains 

compared to control [57] 

USP6NL 
ubiquitin-specific peptidase 6 N-

terminal like   

- USP6NL is a Rab5 GTPase-

activating protein, which regulate the 

endocytosis and internalization of 

EGFR [146, 167]  

- USP6NL is also an effector of Rab5 

that regulates the actin cytoskeleton 

[145] 
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EPHA1 [95, 

108, 138, 

144, 184] 

EPHA1 
Founding member of the Eph family of 

tyrosine kinase receptor  [94]  

- Drosophila ortholog of Eph receptor 

modifies human Tau toxicity in 

Drosophila [59] 

- interacts with Integrin-Like Kinase 

and regulates cell morphology and 

motility through the ILK-RhoA-

ROCK pathway [282]  

- role of ephrin/EphR in synapse 

development and plasticity [140]  

- altered distribution of its paralog 

EphA4 with neuritic plaques in AD 

[209]  

- EphA4 receptor regulates dendritic 

spine remodeling by affecting β1-

integrin signaling pathways [26]  

- synaptic role of EphA4 in Aβ toxicity 

[68]  

- EphA4 activation of c-Abl mediates 

synaptic loss and LTP blockade caused 

by Aβ oligomers [264]  

- EphA4 cleaved by γ-secretase, γ-

secretase-cleaved EphA4 intracellular 

domain regulates dendritic spine 

formation [105, 169] 

CASP2 

caspase 2,   

member of the cysteine-aspartic acid 

protease (caspase) family involved in 

apoptosis 

-  activated upon Aβ treatment [3, 166, 

257]  

- required for dendritic spine and 

behavioural alterations in J20 APP 

transgenic mice, as a critical mediator 

in the activation of the RhoA/ROCK-II 

signalling pathway, in the presence of 

Aβ [200]  

- caspase-2 cleavage of tau at Asp314 

impairs cognitive and synaptic 

function in animal and cellular models 

of tauopathies by promoting the 

missorting of tau to dendritic spines 

[293] 

  

CLCN1 

chloride voltage-gated channel 1,  

involved in the regulation of the 

electric excitability of the skeletal 

muscle membrane 

  

- unexpected expression in human and 

mouse brain. Some CLCN1 variants 

are associated with epilepsy [38] 

EPHA1-AS1 EPHA1 antisense RNA 1   

FAM131B 
family with sequence similarity 131 

member B   
  

LOC1005075

07 
uncharacterized LOC100507507 
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EPHA1 

(cont’d) 

TAS2R41 

taste 2 receptor member 41, 

member of the bitter taste receptor 

family which belong to the G protein-

coupled receptor superfamily and are 

predominantly expressed in taste 

receptor cells of the tongue and palate 

epithelia. 

  
  

TAS2R60 

taste 2 receptor member 60, 

member of the bitter taste receptor 

family which belong to the G protein-

coupled receptor superfamily and are 

predominantly expressed in taste 

receptor cells of the tongue and palate 

epithelia 

  
  

ZYX 

Zyxin, 

zinc-binding phosphoprotein that 

concentrates at focal adhesions and 

along the actin cytoskeleton, may 

function as a messenger in the signal 

transduction pathway that mediates 

adhesion-stimulated changes in gene 

expression and may modulate the 

cytoskeletal organization of actin 

bundles 

  

- its C. elegans ortholog regulates 

synapse maintenance [156] 

MIR6892 microRNA 6892   

FERMT2 

[138, 144] 

FERMT2 
fermitin family member 2, 

focal adhesion protein involved in 

integrin activation  [141] 

- increases Aβ peptide production by 

raising levels of mature APP at the cell 

surface and facilitating its recycling 

[36]  

- associated with brain amyloidosis on 

in vivo brain imaging [13] 

- its Drosophila ortholog modifies 

human Tau toxicity in Drosophila 

[235] 

  

ERO1A 
endoplasmic reticulum oxidoreductase 

1 alpha   
  

GNPNAT1 
glucosamine-phosphate N-

acetyltransferase 1   
  

GPR137C G protein-coupled receptor 137C   

PSMC6 proteasome 26S subunit, ATPase 6   
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FERMT2 

(cont’d) 
STYX 

serine/threonine/tyrosine interacting 

protein, 

it is a pseudophosphatase 
  

  

FRMD4A 

[142] 
FRMD4A 

FERM domain containing 4A, 

FERM domain-containing protein that 

regulates epithelial cell polarity 
 

- regulates Tau secretion in HEK293 

cells and mature cortical neurones 

[283] 

- a homozygous mutation in FRMD4A 

results in a syndrome of congenital 

microcephaly, intellectual disability 

and dysmorphism [65]  

KAT8 [108] 

KAT8 
lysine acetyltransferase 8, 

member of the MYST histone 

acetylase protein family 
  

  

BCKDK 

branched chain ketoacid 

dehydrogenase kinase, 

regulator of the valine, leucine, and 

isoleucine catabolic pathways 

  

- mutations in the gene BCKDK cause 

autism, epilepsy, microcephaly, 

neurobehavioral deficits and 

intellectual disability [71, 189] 

HESX1 / 

IL17RD / 

APPL1 [108] 

HESX1 

HESX homeobox 1, 

transcriptional repressor in the 

developing forebrain and pituitary 

gland 

  
  

IL17RD interleukin 17 receptor D 
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HESX1 / 

IL17RD / 

APPL1 

(cont’d) 

APPL1 
adaptor protein, phosphotyrosine 

interacting with PH domain and 

leucine zipper 1, 

- After being recruited by the β-

cleaved carboxy-terminal fragment of 

APP, the rab5 effector APPL1 

mediates rab5 overactivation in Down 

syndrome and AD leading to 

pathologically accelerated endocytosis, 

endosome swelling and selectively 

impaired axonal transport of rab5 

endosomes [132] 

 

- in AD hippocampus and not in 

control, APPL1 accumulates 

perisomatically as granules around 

neurons and co-localizes with 

glutamate receptor 2 and ubiquitin, 

suggesting the possible involvement of 

APPL1 in the synaptic modifications 

in AD [195]  

- an APPL1/Akt signaling complex 

regulates dendritic spine and synapse 

formation in hippocampal neurons 

[160]  

- adaptor protein APPL1 couples 

synaptic NMDA receptor with 

neuronal prosurvival 

phosphatidylinositol 3-kinase/Akt 

pathway [268]  

- APPL1 gates long-term potentiation 

through its plekstrin homology domain 

[63] 

HLA 

 [108, 138, 

144] 

HLA-DQA1 

HLA-DQA2 

HLA-DQB1 

HLA-DRA 

HLA-DRB1 

HLA-DRB5 

member of the Major 

Histocompatibility Complex Class II 

(MHCII) 
  

-highly expressed on reactive 

microglia (reviewed in [266, 290]) 

- increased HLA-DR positive 

microglia in AD [170, 279]  

- increased expression in monocytes 

and neutrophils in AD [64]  

- reactive microglia in patients with 

senile dementia of the Alzheimer type 

are positive for the histocompatibility 

glycoprotein HLA-DR [172] 

LOC1002941

45 
  

  
  

MIR3135B   
  

  

HS3ST1 [57, 

108] 
HS3ST1 

heparan sulfate-glucosamine 3-

sulfotransferase 1, 

member of the heparan sulfate 

biosynthetic enzyme family 

  

- HS3ST1 transcript expression is 

decreased in AD brains [57] 



 

17 

IGHG3 [25] IGHG3 
immunoglobulin heavy constant 

gamma 3, 

member of the IgG family 

- some IgG antibodies present in 

human plasma recognize 

conformational epitopes present on Aβ 

fibrils and oligomers [191]. The anti-

amyloidogenic activity is a general 

property of free human Ig gamma 

heavy chains. The F1 heavy chain 

prevents in vitro fibril growth and 

reduces in vivo soluble Aβ oligomer-

induced impairment of rodent 

hippocampal long term potentiation [2] 

 
  

INPP5D 

[108, 138, 

144] 

INPP5D 
member of the inositol polyphosphate-

5-phosphatase (INPP5) family 
  

- associated with CSF Tau biomarker 

[204] 

-role in immune response [161, 290]  

- increased mRNA expression in the 

early stage which decreases with 

cognitive decline in Japanese AD 

subjects [286] 

NEU2 

neuraminidase 2, 

glycohydrolytic enzyme which 

removes sialic acid residues from 

glycoproteins and glycolipids 

  

- neuramidases regulate many aspect 

of brain physiology at the level of the 

cell surface carbohydrates of the 

central nervous system tissues [76]  

- NEU1 regulate APP metabolism 

through desialylation [12] 

NGEF 

neuronal guanine nucleotide exchange 

factor, 

member of the Dbl family of proteins, 

which function as guanine nucleotide 

exchange factors for the Rho-type 

GTPases 

  

- NGEF links Eph receptors to the 

actin cytoskeleton and are involved in 

axon gowth cone dynamic [226] 

IQCK [138] 
IQCK 

IQ motif containing K, 

The IQ motif serves as a binding site 

for different EF-hand proteins such as 

calmodulin 

  
  

KNOP1 lysine rich nucleolar protein 1   
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IQCK 

(cont’d) 
C16orf62 

VPS35 endosomal protein sorting 

factor like, 

component of the retriever complex, 

which recycles endocytosed membrane 

protein back to the cell membrane 

[173] 

  
  

MAPT [118] MAPT 
microtubule associated protein tau 

Composing one of AD hallmarks  
too huge to be reviewed here too huge to be reviewed here too huge to be reviewed here 

MS4A 

 [95, 108, 

138, 144, 

184] 

MS4A2 

MS4A3 

MS4A4A 

MS4A4E 

MS4A6A 

MS4A6E 

MS4A7 

Members of a family of membrane 

proteins with four transmembrane 

domains. Role in calcium signaling 

and immune function (reviewed in 

[123, 158]) 

- elevated MS4A6A expression levels 

associated with Braak plaque score 

[124] 

- expression of MS4A6A significantly 

increases in relation to increasing AD-

related neurofibrillary pathology [168] 

- MS4A4A LOAD risky allele 

associates with higher brain expression 

[5] 

OOSP2 oocyte secreted protein 2 
  

  

OARD1 

[138] 
OARD1 

O-acyl-ADP-ribose deacylase 1, 

hydrolyzes mono-ADP-ribosylation 

and interacts with poly-ADP-ribose 

chains post-translational modifications 

  

-homozygous mutation of the OARD1 

gene in patients is associated with 

severe neurodegeneration [227] 

PFDN1 / 

HBEGF 

[119, 153] 

PFDN1 

prefoldin subunit 1, 

one of six subunits of prefoldin, a 

molecular chaperone complex  that 

facilitates posttranslational folding of 

actins and other cytoskeletal proteins 

  

-Pfdn1-deficient mice displayed 

phenotypes characteristic of defects in 

cytoskeletal function, including 

manifestations of ciliary dyskinesia, 

neuronal loss, and defects in B and T 

cell development and function [32] 

HBEGF 
heparin binding EGF like growth 

factor   

-HBEGF is an abundant neurotophic 

molecule of the brain regulating many 

higher brain functions [197] 
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PICALM 

[90, 108, 

138, 144, 

184] 

PICALM 

phosphatidylinositol binding clathrin 

assembly protein, 

protein involved in clathrin mediated 

endocytosis (reviewed in [281]) 

- modifies Aβ toxicity in relationship 

with endocytosis in yeast  [256]  

- regulates APP endocytosis, 

subsequent APP metabolism and Aβ 

production  [252, 280]  

- binds LC3, suggestive role in the 

trafficking APP-CTF from the 

endocytic pathway to the autophagic 

degradation pathway and in Aβ 

clearance [253]  

- regulates γ-secretase endocytosis and 

subsequent Aβ42/total Aβ ratio [120, 

121]  

- regulates Aβ blood-brain-barrier 

transcytosis and clearance [294] 

- regulates autophagy, Tau clearance 

and Tau toxicity [182]  

- co-localizes and 

coimmunoprecipitates with 

neurofibrillary tangles in human brains 

[10]  

- its levels correlates with Tau 

pathology and autophagy impairments 

in human brains [11] 

- strongly expressed in microglia [10]  

- regulates the endocytosis of synaptic 

vesicle proteins [89, 177]  

- regulates the cell surface level of the 

AMPA receptor subunit GluR2 [88] 

CCDC83 coiled-coil domain containing 83   

PLCG2 [237] PLCG2 

phospholipase C gamma 2, 

transmembrane signaling enzyme 

converting PIP2 into IP3 and DAG 

second messengers 

  

-highly expressed in microglia cells 

and limited expression in neurons, 

oligodendrocytes, astrocytes, and 

endothelial cells [289] 
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PTK2B [138, 

144] 

PTK2B 

protein tyrosine kinase 2 beta, 

encode the Pyk2 protein, member of 

the Focal Adhesion Kinase (FAK) 

family of protein tyrosine kinase 

- mediates Aβ neurotoxicity 

downstream of integrins [276]  

- its Aβo-induced phosphorylation is 

inhibited by Fyn inhibition [125]  

- transduces signal downstream of 

Aβo-PrPC-mGluR5 complexes with 

deleterious effects on synaptic 

transmission and maintenance [81, 

216]  

- Hippocampal slices lacking Pyk2 are 

protected from AD-related Aβ 

oligomer suppression of synaptic 

plasticity. In APPswe/PSEN∆E9 mice, 

deletion of Pyk2 rescues synaptic loss 

and learning/memory deficits [215]. 

Upon oAβ treatment, brain Pyk2 

interacts with the RhoGAP protein 

Graf1 to alter dendritic spine stability 

via RhoA GTPase [148]. 

- less active in 5XFAD mice. Loss of 

Pyk2 in 5XFAD x Pyk2-/- double 

mutant mice has no effect but 

lentivirus-mediated Pyk2 

overexpression improves synaptic 

markers and behavioral performance 

suggesting that Pyk2 is not essential 

for the pathogenic effects of human 

amyloidogenic mutations in the 

5XFAD mouse model. However Pyk2 

could contribute to amyloid plaque 

formation [74]. 

- activated in microglial cells upon 

fibrillar Aβ treatment [45] 

- its Drosophila ortholog modifies 

human Tau toxicity in Drosophila [59]  

- abnormally accumulates in neuronal 

somata concurrently with early 

markers of Tau pathology in brains of 

the Thy-Tau22 mouse model and AD 

patients [59] 

- PTK2B is activated by neuronal 

depolarization, Ca2+ and stressful 

conditions [75]  

- Role in neurite outgrowth [106]  

- Role in LTP and LTD [97, 102]. On 

hippocampal slices, Pyk2 is not 

required for basal synaptic 

transmission or long term potentiation 

but participates in long term 

depression [215] 

- Deficiency in mice have alterations 

in NMDA, PSD-95 and spines 

structures. Low level of PTK2B in 

huntington mouse model. Normalizing 

PTK2B levels rescues memory 

deficits, spines pathology and PSD-95 

localization [72] 

- Role in  the survival of cerebellar 

granule neurons [242]  

- Essential for astrocytes mobility 

following brain lesion [73] 

EPHX2 

epoxide hydrolase 2, 

The protein, found in both the cytosol 

and peroxisomes, binds to specific 

epoxides and converts them to the 

corresponding dihydrodiols. 

  

-its products regulate synaptic 

plasticity [277] 

- coding mutation in EPHX2 modifies 

the phenotype of familial 

hypercholoesterolemia [218] 
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PTK2B 

(cont’d) 

STMN4 
stathmin 4, 

belongs to a family of proteins that 

regulates microtubule dynamics [49] 
  

  

TRIM35 
tripartite motif containing 35, 

a RING-B-box-coiled-coil protein with 

apoptotic function 
  

  

CHRNA2 

cholinergic receptor nicotinic alpha 2 

subunit, 

subunit of the muscle and neuronal 

nicotinic acetylcholine receptor 

  

- Cholinergic transmission is strongly 

involved in Alzheimer with a major 

focus on CHRN7 (reviewed in[230]) 

MIR6842 microRNA 6842   

SCIMP / 

RABEP1 

[108, 153] 

SCIMP 

SLP adaptor and CSK interacting 

membrane protein, 

transmembrane adaptor protein that is 

expressed in antigen-presenting cells 

and is localized in the immunologic 

synapse 

  
  

RABEP1 
rabaptin, RAB GTPase binding 

effector protein 1,   

-role in endocytosis in neurons as an 

effector of Rab5 [186] 

SLC24A4 / 

RIN3 [108, 

138, 144] 

SLC24A4 
solute carrier family 24 member 4,  

potassium-dependent sodium-calcium 

exchanger expressed in the brain [150] 
  

- role in Ca2+ signaling in neurons 

controling feeding and satiety [151] 

- necessary for rapid response 

termination and proper adaptation of 

vertebrate olfactory sensory neurons 

[241] 

RIN3 
Ras and Rab interactor 3, 

guanine nucleotide exchange factor for 

RAB5 and RAB31 
  

- RIN3 recruits CD2AP to RAB5a-

positive early endosomes [211] 
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SORL1 [20, 

108, 138, 

144, 187, 

207, 263] 

SORL1 
sortilin related receptor 1, 

transmembrane protein, member of the 

sortilin family of receptors [271] 

-sorts APP into the retromer recycling 

pathway at the expense of the late 

endosomal pathway where APP 

undergoes β- and γ-secretase cleavage 

to generate Aβ. Loss of SORL1 results 

in increased Aβ levels. SORL1 

interaction and sorting of APP is 

dependent on APP dimerization [9, 62, 

194, 207] 

- modulates EphA4, attenuates 

synaptotoxic EphA4 activation and 

cognitive impairment associated with 

Aβ-induced neurodegeneration in AD 

[101] 

 
  

SPPL2A 

[153] 
SPPL2A 

signal peptide peptidase like 2A, 

member of the GXGD family of 

aspartic proteases, homologue of the 

presenilins, located in late endosome 

and lysosome compartments 

  

-Various roles in immune cells, 

protease of TMEM106b, a genetic risk 

factor for the development of 

frontotemporal lobar degeneration 

[174] 

TM2D3 

[107] 
TM2D3 

  TM2 domain containing 3, 

the encoded protein contains a 

structural module related to that of the 

seven transmembrane domain G 

protein-coupled receptor superfamily 

- preferentially influences uptake of 

Aβ aggregates during phagocytosis 

[86] 
 

  - Mutation in the Drosophila TM2D3 

homolog, almondex, causes a 

phenotype similar to loss of 

Notch/Presenilin signaling [107] 

- By functional transcomplementation 

in Drosophila, the rare TM2D3 variant 

associated with LOAD, P155L, is a 

functionally damaging allele [107] 
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TREM2 [20, 

79, 108, 114, 

117, 138, 

237] 

TREM2 

triggering receptor expressed on 

myeloid cells 2, 

cell surface receptor of the 

immunoglobulin superfamily 

expressed on microglial cells 

(reviewed in [232, 261]) 

- oAβ1-42 binds TREM2 on microglia 

and activates microglial response in a 

TREM2-dependent manner. The effect 

of the disease-associated mutations of 

TREM2 on its binding affinity to 

oAβ1-42 is debated [149, 297] 

- its loss alters microglia phagocytosis, 

including phagocytosis of Aβ [111, 

136] 

- its TREM2 in amyloid mouse models 

(APPPS1-21, 5XFAD) results in 

defective microgliosis surrounding Aβ 

plaques with contradictory effects on 

the Aβ accumulation, whereas 

overexpression of TREM2 in the brain 

of APPswe/PS1dE9 mice ameliorated 

AD-related neuropathology [109, 111, 

262, 269] 

- in vitro, human stem cell-derived 

monocytes and transdifferentiated 

microglia-like cells reveal impaired 

amyloid plaque clearance upon 

heterozygous or homozygous loss of 

TREM2 [43] 

- its deficiency reduces the efficacy of 

immunotherapeutic amyloid clearance 

[278] 

-increased soluble TREM2 (sTREM2) 

CSF levels in AD patients that 

correlates with CSF Tau levels [198, 

246] 

-its loss exacerbates Tau pathology in 

P301S Tau mice [112]. Increased 

TREM2 ameliorates the pathological 

effects of activated microglia on 

GSK3-mediated neuronal Tau 

hyperphosphorylation via suppression 

of microglial inflammatory response 

[113] 

- In contrast, glial expression of 

TREM2/TYROBP exacerbates Tau-

mediated neurodegeneration in 

Drosophila [223] 

- In transgenic mice expressing mutant 

human tau, TREM2 

haploinsufficiency, but not complete 

loss of TREM2, increases Tau 

pathology. The effect on microglial 

injury and Tauopathy would depend 

on the partial or complete loss of 

TREM2 [220] 

- Promotes Microglial Survival by 

Activating Wnt/β-Catenin Pathway 

[295]  

- The AD-associated R47H TREM2 

mutation have pleiotropic negative 

effects on microglia and myeloid cells 

that can be rescued by some TREM2-

activating antibodies [39, 40] 

- Structural analysis reveals that Arg47 

plays a critical role in maintaining the 

structural features of the 

complementarity-determining region 2 

(CDR2) loop and the putative positive 

ligand-interacting surface (PLIS), 

stabilizing conformations capable of 

ligand interaction [247]. However AD-

associated TREM2 mutant would bind 

Aβ with equivalent affinity but show 

loss of function in terms of signaling 

and Aβ internalization [149] 

- APOE is a ligand of TREM2 whose 

binding to TREM2 can be blocked by 

the high-affinity binding of oAβ to 

TREM2. APOE binding is reduced for 

R47H TREM2 [14, 15, 149] 

TREML2 

triggering receptor expressed on 

myeloid cells like 2, structurally 

related to the TREM famlily but does 

not signal though DAP12/TYROBP 

(reviewed in [66]) 

- oligomeric amyloid-β treatment up-

regulates TREML2 expression in 

primary microglia [296] 
 

- has AD-associated functional 

variants independent of TREM2 ones 

[21]. 

- The modulation of TREM2 or 

TREML2 levels has opposing effect 

on the proliferation of primary 

microglia, TREM2 or TREML2 

downregulation respectively decrease 

or increase microglia proliferation 

[296].  
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TSPOAP1 

[108, 119] 

TSPOAP1 

TSPO associated protein 1,  

TSPO (translocator protein) is a key 

factor in the flow of cholesterol into 

mitochondria to permit the initiation of 

steroid hormone synthesis 

  
  

MIR142 

microRNA 142,  

abundantly expressed in hematopoietic 

cells with roles in inflammatory and 

immune responses (reviewed [228]) 

 

-upregulated in the hippocampi of 

rTg4510 Tau mice in the 

presymptomatic stage and onward. 

Similar to what is observed in Tau 

brains, overexpressing miR142 in 

wildtype cortical neurons augments 

mRNA levels of Gfap and Csf1, 

accompanied by a significant increase 

in microglia and reactive astrocyte 

numbers [229] 

  

TSPOAP1-

AS1 
TSPOAP1 antisense RNA 1 

  
  

WWOX / 

MAF [138] 

WWOX 

WW domain containing 

oxidoreductase, 

member of the short-chain 

dehydrogenases/reductases (SDR) 

protein family 

 

- WWOX is decreased in the neurons 

of AD hippocampi. WWOX binds to 

Tau through its SDR domain. Knock-

down of WWOX results in Tau 

hyperphosphorylation [250] 

- WWOX is mutated in autosomal 

recessive cerebellar ataxia with 

epilepsy and mental retardation [164] 

MAF 

MAF bZIP transcription factor, 

DNA-binding, leucine zipper-

containing transcription factor that acts 

as a homodimer or as a heterodimer 

  

- MAF promotes functional 

differentiation and anti-inflammatory 

responses in myeloid cells [33] 

- Negative regulation of MAF 

mediates p53 proinflammatory 

responses in microglia [245] 

- Maf links Neuregulin1 signaling to 

cholesterol synthesis in myelinating 

Schwann cells [131] 

- c-Maf is required for the 

development of dorsal horn laminae 

III/IV neurons and mechanoreceptive 

DRG axon projections [98] 
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ZCWPW1 / 

NYAP1 

[108, 138, 

144] 

ZCWPW1 
Contain a zf-CW domain involved in 

histone modification reading [92]   
  

ACTL6B 
actin like 6B, 

member of a family of actin-related 

proteins (ARPs) 
  

-subunit of neuron-specific chromatin 

remodeling complex [196] 

- its loss in mice results in synaptic 

plasticity and cocaine-associated 

memory defects that can be rescued by 

BDNF [270] 

AGFG2 

ArfGAP with FG repeats 2, 

member of the HIV-1 Rev binding 

protein (HRB) family and plays a role 

in the Rev export pathway, which 

mediates the nucleocytoplasmic 

transfer of proteins and RNAs 

  
  

AP4M1 

adaptor related protein complex 4 

subunit mu 1, 

subunit of the heterotetrameric AP-4 

complex, which is involved in the 

recognition and sorting of cargo 

proteins with tyrosine-based motifs 

from the trans-golgi network to the 

endosomal-lysosomal system 

  

-its mutation and AP-4 deficiency 

results in many clinical neuronal 

symptoms such as intellectual 

disability or hereditary spastic 

paraplegia… 

AZGP1 

alpha-2-glycoprotein 1, zinc-binding, 

encode Zinc-α2-glycoprotein (ZAG), 

which is a major histocompatibility 

complex I molecule and a lipid-

mobilizing factor. 

  
  

C7orf43 chromosome 7 open reading frame 43   

C7orf61 chromosome 7 open reading frame 61 
  

  

CNPY4 
canopy FGF signaling regulator 4, 

 regulates cell surface expression of 

Toll-like receptor 4 
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ZCWPW1 / 

NYAP1 

(cont’d) 

COPS6 

COP9 signalosome subunit 6, 

one of the eight subunits of COP9 

signalosome, regulator in multiple 

signaling pathways, whose structure is 

similar to that of the 19S regulatory 

particle of 26S proteasome. 

  
  

CYP3A43 

cytochrome P450 family 3 subfamily 

A member 43, 

The cytochrome P450 proteins are 

monooxygenases which catalyze many 

reactions involved in drug metabolism 

and synthesis of cholesterol, steroids 

and other lipids 

  
  

FBXO24 

F-box protein 24, 

F-box protein of the Fbxs class, the F-

box proteins constitute one of the four 

subunits of the SCF ubiquitin protein 

ligase complex 

  
  

GAL3ST4 
galactose-3-O-sulfotransferase 4, 

member of the galactose-3-O-

sulfotransferase protein family 
  

  

CASTOR3 
CASTOR family member 3, also 

named GATS   
- Lower expression in AD brain [122] 

GIGYF1 
GRB10 interacting GYF protein 1, 

member of the gyf family of adaptor 

proteins 
  

- its Drosophila ortholog regulates 

neuronal autophagy [129] 

- regulates the Insulin signaling 

pathway [298] 

GJC3 gap junction protein gamma 3 
  

-expressed in the myelinating glial 

cells [8] 

GNB2 
G protein subunit beta 2, 

G proteins integrate signals between 

receptors and effector proteins 
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ZCWPW1 / 

NYAP1 

(cont’d) 

GPC2 

glypican 2, 

Glypicans are a group of cell-surface 

glycoproteins in which heparan sulfate 

(HS) glycosaminoglycan chains are 

covalently linked to a protein core, it 

can function as coreceptors for 

multiple signaling molecules. 

  

- involved in neuronal cell adhesion 

and neurite outgrowth [139] 

LAMTOR4 

late endosomal/lysosomal adaptor, 

MAPK and MTOR activator 4, 

subunit of the Rag-Ragulator complex, 

located on lysosome membrane and 

regulating MAPK and mTOR 

signaling pathways 

  

- Lamtor4 is an essential regulator of 

microglia lysosomes for proper 

lysosome function and phagocytic flux 

in zebrafish microglia [231] 

LOC1001283

34 

gap junction protein gamma 3 

pseudogene   
  

LRCH4 

leucine rich repeats and calponin 

homology domain containing 4, 

the encoded protein resembles a 

membrane receptor 

  

- Lrch4 is a Toll-Like Receptor 

accessory protein, which regulates 

innate immune response [7] 

MBLAC1 
metallo-beta-lactamase domain 

containing 1   

- differentially expressed in AD brains 

[28] 

- C.elegans MBLAC1 limits 

Dopaminergic (DA) neuron 

excitability, DA secretion, and DA-

dependent behaviors through 

modulation of Glu signaling [87] 

MCM7 

minichromosome maintenance 

complex component 7, 

subunit of the MCM complex, key 

component of the pre-replication 

complex, involved in the formation of 

replication forks and possessing a 

DNA helicase activity 

  
  

MEPCE 

methylphosphate capping enzyme, 

possesses histone-binding and RNA 

methylation activities involved in the 

regulation of transcription 
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ZCWPW1 / 

NYAP1 

(cont’d) 

MIR106B microRNA 106b 
  

- reduces ATG16L1 levels and 

autophagy In human cell lines (Lu C et 

al 2014)[155] 

MIR25 microRNA 25 
  

  

MIR4658 microRNA 4658 
  

  

MIR93 microRNA 93 
  

- reduces ATG16L1 levels and 

autophagy In human cell lines [155] 

MOSPD3 

motile sperm domain containing 3, 

encodes a multi-pass membrane 

protein with a major sperm protein 

(MSP) domain 

  
  

NYAP1 
neuronal tyrosine phosphorylated 

phosphoinositide-3-kinase adaptor 1   

- NYAP family links PI3K to WAVE1 

complex, which mediates remodelling 

of the actin cytoskeleton, and regulate 

neuronal morphogenesis [285] 

OR2AE1 
olfactory receptor family 2 subfamily 

AE member 1   
  

PCOLCE 

procollagen C-endopeptidase 

enhancer, 

encodes a glycoprotein which binds 

and drives the enzymatic cleavage of 

type I procollagen and heightens C-

proteinase activity 

  
  

PCOLCE-

AS1 
PCOLCE antisense RNA 1 

  
  

PILRA 

paired immunoglobin like type 2 

receptor alpha, 

encode a cell surface inhibitory 

receptor paired with PILRB that 

recognizes specific O-glycosylated 

proteins and is expressed on various 

innate immune cell types including 

microglia 

  

- The common missense variant 

(G78R, rs1859788) of PILRA could be 

the causal allele for the locus. The 

G78R mutation reduces the binding of 

PILRA to its ligand such as 

complement component 4A. It could 

protects individuals from AD risk via 

reduced inhibitory signaling in 

microglia [206] 
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ZCWPW1 / 

NYAP1 

(cont’d) 

PILRB 

paired immunoglobin-like type 2 

receptor beta, 

encode a cell surface activator receptor 

paired with PILRB that recognizes 

specific O-glycosylated proteins and is 

expressed on various innate immune 

cell types including microglia 

  

- its levels is associated with AD status 

[122] and  with LOAD GWAS index 

SNPs [4] 

PPP1R35 

protein phosphatase 1 regulatory 

subunit 35, 

a centrosomal protein critical for 

centriole elongation 

  
  

PVRIG 

PVR related immunoglobulin domain 

containing, 

 a member of poliovirus receptor-like 

proteins and a coinhibitory receptor for 

human T cells 

  
  

SAP25 

Sin3A associated protein 25, 

SAP25 associates with the mSin3A-

HDAC complex in vivo and represses 

transcription 

  
  

SPDYE3 
speedy/RINGO cell cycle regulator 

family member E3   
  

STAG3 

stromal antigen 3, 

subunit of the cohesin complex which 

regulates the cohesion of sister 

chromatids during cell division 

  
  

TAF6 

TATA-box binding protein associated 

factor 6, 

component of the  transcription factor 

IID involved in basal transcription 

  
  

TFR2 
transferrin receptor 2, 

This protein mediates cellular uptake 

of transferrin-bound iron 
  

  

TRIM4 tripartite motif containing 4   
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ZCWPW1 / 

NYAP1 

(cont’d) 

TSC22D4 

TSC22 domain family member 4, 

member of the TSC22 domain family 

of leucine zipper transcriptional 

regulators 

  
  

ZKSCAN1 

zinc finger with KRAB and SCAN 

domains 1, 

encodes a member of the Kruppel 

C2H2-type zinc-finger family of 

proteins that may function as a 

transcription factor regulating the 

expression of GABA type-A receptors 

in the brain 

  
  

ZNF3 zinc finger protein 3   

ZSCAN21 
zinc finger and SCAN domain 

containing 21   

-ZSCAN21 regulates α-synuclein 

transcription in neuronal cells and rare 

genetic variants in ZSCAN21 gene 

occur in patients with familial forms of 

Parkinson's Disease [56, 147] 

ZNF655 [25] ZNF655 zinc finger protein 655   
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