

Mouse Cy5 Rabbit Cy3 DAPI

DAB w/o JRF/cAβ 40/28

DAB w/o 11A50-B10 (Aβ₄₀)

d.

Rabbit Cy3 DAPI

Mouse Cy5 Rabbit Cy3 DAPI

h. TUNEL Negative Control

TUNEL PDGFRβ DAPI

Mouse Cy5 DAPI

Rabbit Cy5 Goat Cy3 DAPI

TUNEL PDGFRβ DAPI

Supplementary Figure 1. Negative controls for all immunofluorescent staining. **a**. Representative images of negative controls (primary antibodies omitted) for isolated vascular staining in figure 1, with secondary antibodies (donkey anti-rabbit Cy3 and anti-mouse Cy5) and DAPI. Scale bar=10µm. **b-c**. Representative images of negative controls (primary antibodies omitted) for DAB staining without (w/o) **b**. JRF/cAβ 40/28 or **c**. 11A50-B10 (Aβ₄₀). Scale bars=20µm. **d**. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figure 2, with secondary antibody (donkey anti-rabbit Cy3) and DAPI. Scale bar=10µm. **e**. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figure 3 and 4, with secondary antibody (donkey anti-mouse Cy5) and DAPI. Scale bar=10µm. **f**. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figures 3 and 4, with secondary antibodies (donkey anti-rabbit Cy3 and anti-mouse Cy5) and DAPI. Scale bar=10µm. **g**. Representative image of negative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figures 3 and 4, with secondary antibodies (donkey anti-rabbit Cy3 and anti-mouse Cy5) and DAPI. Scale bar=10µm. **g**. Representative image of negative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figures 6, with second ary antibodies (donkey anti-goat Cy3 and anti-rabbit Cy5) and DAPI. Scale bar=10µm. **h**. Representative images of negative control (without termial transferase) and positive control (pretreatment with DNasel) for TUNEL staining experiment in figure 6. Scale bars=10µm.

b.

C.

Supplementary Figure 2. Extended representative images for figure 1 on retinal microvascular A β and PDGFR β^+ pericytes. **a-b**. Separate channels of representative fluorescent images for A β (11A50-B10, 12F4, 6E10 or 4G8 as indicated, red), PDGFR β (pericytes, white), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) on isolated retinal microvasculature from age and sex-matched human donors with AD (n=5) or cognitively normal (CN, n=5). **c**. A β (6E10, red), lectin (green) and DAPI (blue) staining showing A β deposits in a degenerated, acellular capillary (indicated by arrows). Upper right image shows zoomed-in image from the original. **d**. Enlarged confocal images of retinal microvascular pericytes from AD and CN donors (A β -red, PDGFR β -white, lectin-green, DA-PI-blue). Scale bars=10µm.

ADTg Perfused

Mouse [M, 8.5mo]

WT Perfused

Mouse [M, 8.5mo]

C.

Supplementary Figure 3. Significant retinal vascular Aβ deposition in perfused transgenic ADTg mice. **a-c**. Representative fluorescent images for Aβ (4G8, red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) on isolated retinal microvasculature from a. non-perfused 8.5 month old male ADTg mice, or b. perfused 8.5 month old male ADTg mice, and c. perfused 8.5 month old male wild type mice. Scale bars=10µm.

a.

ADTg Non-perfused Mouse [M, 8.5mo]

b.

Supplementary Figure 4. Extended representative images for figure 2 on retinal vascular PDGFR β . **a-b**. Merged and separate channels of representative fluorescent images for PDGFR β (red), lectin (gly-coprotein in blood vessel, green) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). **a**. Vertical (V) and **b**. Longitudinal (L) blood vessels are shown. Scale bars=10µm.

Supplementary Figure 5. Extended data on retinal PDGFR β in longitudinal vasculature from all retinal quadrant regions in AD, MCI and CN human donors and mapping of PDGFR β . **a-d**. Quantitative analysis of % PDGFR β -immunoreactive area in longitudinal (L) vessels from each retinal quadrant separately: **a**. NS, **b**. IN, **c**. ST, **d**. TI in total cohort of AD (n=21), MCI (n=7) and cognitively normal (CN) (n=10) human donors. **e-f**. Quantitative analysis of retinal % PDGFR β immunoreactivity in L vasculature (average of all four quadrants): **e**. subjects stratified by clinical diagnosis (n=38) and **f**. Pearson's correlations against brain CAA scores in a subset of this cohort (n=14). **g**. Mapping of vertical (V) vascular PDGFR β in four retinal quadrants. (* indicates AD vs. CN, * indicates AD vs. MCI) Data from individuals as well as group means and SEMs are shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, by one-way ANOVA test with Sidak's post-hoc multiple comparison test. Percent change are shown in red.

PDGFRβ 12F4 (Aβ42) **DAPI**

Rβ DAPI 12F4

Supplementary Figure 6. Extended representative images for figure 3. **a-b**. Representative fluorescent images of paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI, or cognitively normal (CN) stained for $A\beta_{42}$ (12F4, green) and DAPI (nuclei, blue). **a**. Vertical (V) and **b**. longitudinal (L) blood vessels are shown. Dashed geometric shapes (white) indicate pre-defined areas of analysis. Scale bars=50 µm. **c**. Pearson's coefficient (r) correlation between retinal 12F4⁺ $A\beta_{42}$ burden in both V and L (AII) blood vessels against brain CAA score. **d-e**. Merged and separate channels of representative fluorescent images for 12F4 ($A\beta_{42}$, green), PDGFR β (red) and DAPI (nuclei, blue) in paraffin embedded retinal cross-sections isolated from age and sex-matched human subjects with AD and MCI. Arrows point at $A\beta_{42}$ in PDGFR β^+ cells. Both retinal V and L blood vessels in **d**. MCI and **e**. AD patients are shown (yrs=years old; F=female; C=Caucasian). Scale bars=10µm.

Supplementary Figure 7. Expanded representative images for $A\beta_{42}$, PDGFR β , lectin and DAPI. **a-f**. Merged and separate channels of representative fluorescent images for 12F4 ($A\beta_{42}$, white), PDGFR β (red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). **a-c**. Vertical and **d-f**. Longitudinal vessels are shown (yrs=years old; F=female; C=Caucasian). Scale bars=10µm.

Supplementary Figure 8. Extended data on retinal vascular $A\beta_{40}$ deposits from MCI and AD human donors compared to cognitively normal controls. **a.** Representative horseradish peroxidase and 3,3'-Diaminobenzidine (DAB) staining of images for 11A50-B10-A β_{40} in retinas from AD and cognitively normal (CN) subjects. Arrows indicate vascular $A\beta_{40}$ staining in tunica intima and media. Scale bars = 20 µm. **b**. Representative fluorescent microscope images of paraffin-embadded retinal cross-sections from AD, MCI and CN stained against $A\beta_{40}$ (JRF/cA β 40/28 antibody; green), endothelial cells (CD31; red) and nuclei (DAPI, blue). **c**. Quantitative analysis of retinal vascular $A\beta_{40}$ -IR area in a subset of MCI (n=4), AD (n=6) and CN (n=4) human donors. Data from individual human donors as well as group means and SEMs are shown. **p < 0.01, ****p < 0.0001, by one-way ANOVA test with Sidak's post-hoc multiple comparison test. Fold change are shown in red. **d**. Pearson's coefficient (r) correlation between retinal $A\beta_{40}$ burden (11A50-B10-IR area) in both vertical and longitudinal vasculature (average) against CAA score in parenchymal brain average (grey) and entorhinal cortex (EC, red), within a subset of subjects with AD, MCI and CN (n=10). **e**. High-magnification images showing co-localization of vascular $A\beta_{40}$ (green) and PDGFR β (red; co-localization indiacted by arrows) in a MCI subject 'yrs=years old; F=female; C=Caucasian). Scale bars = 10µm.

Supplementary Figure 9. Extended representative images for retinal A β_{40} . **a-b**. Merged and separate channels of representative fluorescent images for 11A50-B10 (A β_{40} , red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) in paraffin-embadded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). **a**. Vertical and **b**. Longitudinal vessels are shown(yrs=years old; F=female; C=Caucasian; A=Asian). Scale bars=10µm.

Supplementary Figure 10. Supplementary information for quantification of A β_{40} in human retina. **a-d**. Quantitative analysis of 11A50-B10 (A β_{40}) immunoreactive (IR) area (normalized by retinal thickness) in retinal layers (from inner to outer limiting membrane) from each retinal quadrant separately: **a**. NS, **b**. IN, **c**. ST, **d**. TI in AD (n=17), MCI (n=8), and CN (n=11) human donors. **e**. Pearson's coefficient (r) correlation between A β_{40} IR area and retinal A β_{40} burden in blood vessels (n=26). **f-j**. Quantitative analysis of raw data of 11A50-B10 (A β_{40})-IR area in retinal layers from each retinal quadrant separately and all quadrants together: **f**. all retinal quadrants, **g**. NS, **h**. IN, **i**. ST and **j**. TI in AD (n=17), MCI (n=8) and CN (n=11) human donors. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, by one-way ANOVA test with Sidak's post-hoc multiple comparison test. Fold changes are shown in red.

Supplementary Figure 11. Extended data of inner vs. outer retinal $A\beta_{40}$ and mapping for all four retinal quadrants a-e. Quantitative analysis of raw data of $A\beta_{40}$ -immunoreactive (IR) area in inner retinal layers from each retinal quadrant separately and all quadrants together: **a**. NS, **b**. IN, **c**. ST, **d**. TI, **e**. all, in AD (n=17), MCI (n=8) and CN (n=11) human donors. **f-j**. Quantitative analysis of raw data of $A\beta_{40}$ -IR area in outer retinal layers from each retinal quadrant separately and all quadrants together: **f**. NS, **g**. IN, **h**. ST, **i**. TI, **j**. all, in AD (n=17), MCI (n=8) and CN (n=11) human donors. **k**. Mapping of $A\beta_{40}$ in four retinal quadrants (* indicates AD vs. CN, * indicates AD vs. MCI). **I**. Pearson's coefficient (r) correlation between $A\beta_{40}$ IR area against % PDGFR β -IR area in vessels (n=28). Data from individual human donor as well as group means and SEMs are shown. *p < 0.05, **p < 0.01, ****p < 0.001, by one-way or two-way ANOVA test with Sidak's post-hoc multiple comparison test. Fold changes are shown in red.

b.

AD

Supplementary Figure 12. Extended representative images for LRP-1 in figure 6. **a-b**. Merged and separate channels of representative fluorescent images for LRP-1 (red), PDGFR β (green), lectin (glycoprotein in blood vessel, white) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD or cognitively normal (CN). **a**. CN and **b**. AD are shown. Scale bars=10µm.

Supplementary Figure 13. Extended representative images for cleaved caspase-3 in figure 6. **a-d**. Merged and separate channels of fluorescent images for cleaved caspase-3 (red), PDGFR β (green), lectin (glycoprotein in blood vessel, white) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). **a**. CN, **b**. MCI and **c-d**. AD are shown. Scale bars=10µm.

Supplementary Figure 14. Extended representative images for TUNEL staining in figure 6. **a-d**. Merged and separate channels of fluorescent images for TUNEL (green), PDGFR β (red), and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). **a**. CN, **b**. MCI and **c-d**. AD are shown. Scale bars=10µm.

	CN	MCI	AD	F	Ρ
No. of Subjects	14	11	21	_	_
(n=46)	(9F, 5M)	(5F, 6M)	(13F, 8M)		
Age ± SD	79.14 ± 10.5	87.09 ± 5.4	81.81 ± 14.9		
[Years]	F: 79.78 ± 12.3	F, 90.2 ± 3.6	F, 85.61 ± 12.6	1.404	0.2567
	M: 78.0 ± 7.3	M, 84.5 ± 5.5	M, 67.2 ± 16.7		
Race	13C (92.9%)	7C (81.8%)	16C (76.2%)		
(%)	1B (7.1%)	1H (9.1%)	1B (4.8%)	-	-
		1B (9.1%)	4A (19%)		
PMI	7.5 ± 2.3	9.5 ± 5.0	7.6 ± 3.7	1.120	0.3355
[Hours]					

 Table S1. Demographic data on human eye donors evaluated by retinal cross-section.

CN cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer's disease; F, female, M, male; SD, standard deviation; C, Caucasian; B, Black; H, Hispanic; A, Asian, UK Unknown; PMI, post-mortem interval; Values are presented as mean ± SD. F and P values were determined by one-way ANOVA with Sidak's multiple comparison test.

 Table S2. Neuropathological evaluation in a subset of human donors evaluated by retinal cross-section.

Brain Scores	CN* (n=1)	MCI (n=7)	AD (n=17)
CAA	1	0.7 ± 0.97	1.3 ± 0.75
Aβ Plaque	0.545	2.11 ± 0.77	2.8 ± 0.93
Neurofibrillary Tangle	0.98	1.46 ± 0.99	2.5 ± 1.3
Neuropil Thread	0.86	1.1 ± 0.93	1.13 ± 1.2
Atrophy	0.8	1.09 ± 1.08	2.05 ± 1.2

CN cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer's disease; A neuropathological score from one CN donor. CAA, cerebral amyloid angiopathy.

		Neuritic Plaques	Immature Plaques	Diffuse Plaque	NFTs (Silver)	Neuropil Threads
All Brain	r	- 0.50	-0.36	-0.45	- 0.07	- 0.03
	Ρ	0.0264	0.1224	0.0443	0.7801	0.9022
Hippocompus	r	- 0.61	-0.40	-0.38	- 0.17	0.12
Hippocampus	Ρ	0.0046	0.0802	0.0986	0.4622	0.6184
Entorhinal	r	0.26	-0.01	0.35	0.15	- 0.23
Cortex	Ρ	0.0433	0.2598	0.3403	0.4902	0.5154
Encentral Contract	r	-0.01	-0.30	-0.04	-0.38	- 0.34
Frontal Cortex	Ρ	0.9543	0.1990	0.8586	0.1027	0.1396
Temporal	r	-0.06	-0.33	-0.35	-0.09	-0.18
Cortex	Ρ	0.8066	0.1551	0.1265	0.7234	0.4504
Parietal	r	0.05	0.01	-0.28	-0.33	-0.39
Cortex	Ρ	0.8431	0.9769	0.2280	0.1511	0.0938
PV. Ctx.	r	-0.32	-0.35	-0.46	-0.25	-0.55
A-17	Ρ	0.2134	0.1540	0.0568	0.3412	0.0175
VA. Ctx.	r	-0.74	-0.30	-0.58	-0.39	-0.46
A-18	Ρ	0.0015	0.2598	0.0192	0.1457	0.0872

Table S3. Multiple correlation analysis between % retinal PDGF β area in vessels and neuropathological parameters

Correlations between retinal % area of PDGF β in vessels and the corresponding neuropathological measurements: neuritic plaques, immature plaques, diffuse plaques, neurofibrillary tangles (NFTs; by Gallyas Silver stain), neuropil threads by sliver stain. Scores are given as: 0 = None, 1 = Sparse (-5), 3 = Moderate (6-20), 5 = Frequent (21-30 or above) based on pathological reports. Analysis was performed for mean of all brain regions and separated for each brain region. Sample size: n=14 for AD, n=5 for MCI, n=1 for CN. Statistical significance *P* is < 0.05 indicated in bold red color. Pearson's r correlations analysis was applied to determine relationships; PV – primary visual; VA – visual association; Ctx – cortex.

			Immature Plaques	Diffuse Plaques	NFTs (Silver)	Neuropil Threads
All Brain	r	0.55	0.44	0.16	0.24	0.58
	Р	0.0492	0.1292	0.6122	0.4278	0.0375
Hippocompus	r	0.41	0.22	0.08	0.37	0.48
Hippocampus	Ρ	0.1649	0.4702	0.7984	0.211	0.0967
Entorhinal	r	0.77	0.47	0.2	0.33	0.31
Cortex	Р	0.0023	0.1012	0.505	0.2755	0.3018
Frontal Cortex	r	0.05	0.53	-0.06	0.40	0.53
FIGHTALCOLLEX	Ρ	0.8747	0.0638	0.8475	0.1777	0.0616
Temporal	r	0.00	0.23	0.02	0.06	0.57
Cortex	Р	0.9878	0.4551	0.9574	0.8534	0.0507
Parietal	r	0.02	-0.09	0.15	0.14	0.38
Cortex	Ρ	0.941	0.7627	0.6274	0.6522	0.2022
PV. Ctx.	r	0.18	0.6	0.21	-0.19	0.64
A-17	Р	0.5929	0.0373	0.5179	0.5798	0.0347
VA. Ctx.	r	0.54	0.53	-0.09	-0.03	0.84
A-18	Р	0.1377	0.1137	0.8081	0.93	0.0042

Table S4. Multiple correlation analysis between % retinal $A\beta_{40}$ area in vessels and neuropathological parameters

Correlations between retinal % area of A β_{40} in vessels and the corresponding neuropathological measurements: neuritic plaques, immature plaques, diffuse plaques, neurofibrillary tangles (NFTs; by Gallyas Silver stain), neuropil threads by sliver stain. Scores are given as: 0 = None, 1 = Sparse (-5), 3 = Moderate (6-20), 5 = Frequent (21-30 or above) based on pathological reports. Analysis was performed for mean of all brain regions and separated for each brain region. Sample size: n=8 for AD, n=3 for MCI, n=1 for CN patients. Statistical significance *P* is < 0.05 indicated in bold red color. Pearson's r correlations analysis was applied to determine relationships; PV – primary visual; VA – visual association; Ctx – cortex.

	inal ions	Total	ST	TI	IN	NS	Superior	Inferior	Nasal	Temporal
	r	0.77	0.89	0.82	0.71	0.92	0.92	0.71	0.73	0.89
ŀ	Ρ	0.0156	0.016	0.1825	0.0499	0.0271	0.0036	0.0486	0.0411	0.0171
1	N	9	6	4	8	5	7	8	8	6

Total; total retinal average; ST, superiortemporal; TI, temporalinferior; IN, inferioirnasal; NS, nasalsuperior; Superior, mean of ST and NS values; Inferior, mean of TI and IN values; Nasal, mean of IN and NS values; Temporal, mean of ST and TI values. N, number of pairs. Statistical significance *P* is < 0.05. Pearson's r correlations analysis was applied to determine relationships.

Retinal Regions	Total	ST	TI	IN	NS	Superior	Inferior	Nasal	Temporal
r	-0.57	-0.71	N/A	-0.65	N/A	-0.73	-0.67	-0.66	-0.75
Р	0.0827	0.0737	N/A	0.1107	N/A	0.0625	0.099	0.1062	0.0539
n	10	7	N/A	7	N/A	7	7	7	7

Table S6. Correlation between $A\beta_{40}$ burden per retinal subregions and MMSE cognitive scores.

Total; total retinal average; ST, superiortemporal; TI, temporalinferior; IN, inferioirnasal; NS, nasalsuperior; Superior, mean of ST and NS values; Inferior, mean of TI and IN values; Nasal, mean of IN and NS values; Temporal, mean of ST and TI values. N, number of pairs. N/A, not applicable. Statistical significance *P* is < 0.05. Pearson's r correlations analysis was applied to determine relationships.