

Supplementary Figure 1. Negative controls for all immunofluorescent staining. a. Representative images of negative controls (primary antibodies omitted) for isolated vascular staining in figure 1, with secondary antibodies (donkey anti-rabbit Cy3 and anti-mouse Cy5) and DAPI. Scale bar=10 $\mu \mathrm{m} . \mathbf{b - c}$. Representative images of negative controls (primary antibodies omitted) for DAB staining without (w/o) b. JRF/cA $30 / 28$ or c. 11A50-B10 $\left(A \beta_{40}\right)$. Scale bars $=20 \mu \mathrm{~m}$. d. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figure 2, with secondary antibody (donkey anti-rabbit Cy3) and DAPI. Scale bar=10 $\mu \mathrm{m}$. e. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figure 3 and 4, with secondary antibody (donkey anti-mouse Cy5) and DAPI. Scale bar=10 m . f. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figures 3 and 4, with secondary antibodies (donkey anti-rabbit Cy3 and anti-mouse Cy5) and DAPI. Scale bar=10 $\mu \mathrm{m}$. g. Representative image of negative controls (primary antibodies omitted) for retinal cross-section staining in figure 6, with second ary antibodies (donkey anti-goat Cy3 and anti-rabbit Cy5) and DAPI. Scale bar=10 $\mu \mathrm{m}$. h. Representative images of negative control (without termial transferase) and positive control (pretreatment with DNasel) for TUNEL staining experiment in figure 6 . Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 2. Extended representative images for figure 1 on retinal microvascular A β and PDGFR β^{+}pericytes. a-b. Separate channels of representative fluorescent images for $A \beta$ (11A50-B10, 12F4, 6E10 or 4G8 as indicated, red), PDGFR (pericytes, white), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) on isolated retinal microvasculature from age and sex-matched human donors with AD ($n=5$) or cognitively normal ($C N, n=5$). c. $A \beta$ (6E10, red), lectin (green) and DAPI (blue) staining showing A β deposits in a degenerated, acellular capillary (indicated by arrows). Upper right image shows zoomed-in image from the original. d. Enlarged confocal images of retinal microvascular pericytes from AD and CN donors (A β-red, PDGFR β-white, lectin-green, DA-PI-blue). Scale bars= $10 \mu \mathrm{~m}$.

Supplementary Figure 3. Significant retinal vascular A β deposition in perfused transgenic ADTg mice. a-c. Representative fluorescent images for $A \beta$ (4 G 8 , red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) on isolated retinal microvasculature from a. non-perfused 8.5 month old male ADTg mice, or \mathbf{b}. perfused 8.5 month old male ADTg mice, and \mathbf{c}. perfused 8.5 month old male wild type mice. Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 4. Extended representative images for figure 2 on retinal vascular PDGFR β. a-b. Merged and separate channels of representative fluorescent images for PDGFR (red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). a. Vertical (V) and \mathbf{b}. Longitudinal (L) blood vessels are shown. Scale bars $=10 \mu \mathrm{~m}$.

g.

Supplementary Figure 5. Extended data on retinal PDGFR β in longitudinal vasculature from all retinal quadrant regions in AD, MCI and CN human donors and mapping of PDGFR β. a-d. Quantitative analysis of \% PDGFR β-immunoreactive area in longitudinal (L) vessels from each retinal quadrant separately: a. NS, b. IN, c. ST, d. TI in total cohort of AD ($n=21$), MCI ($n=7$) and cognitively normal (CN) ($n=10$) human donors. e-f. Quantitative analysis of retinal \% PDGFR β immunoreactivity in L vasculature (average of all four quadrants): e. subjects stratified by clinical diagnosis ($n=38$) and f. Pearson's correlations against brain CAA scores in a subset of this cohort ($n=14$). \mathbf{g}. Mapping of vertical (V) vascular PDGFR β in four retinal quadrants. (* indicates AD vs. CN, *indicates AD vs. MCI) Data from individuals as well as group means and SEMs are shown. ${ }^{*} p<0.05,{ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$, ${ }^{* * * *} p<0.0001$, by one-way ANOVA test with Sidak's post-hoc multiple comparison test. Percent change are shown in red.

Supplementary Figure 6. Extended representative images for figure 3. a-b. Representative fluorescent images of paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI, or cognitively normal (CN) stained for $\mathrm{A} \beta_{42}$ (12F4, green) and DAPI (nuclei, blue). a. Vertical (V) and \mathbf{b}. longitudinal (L) blood vessels are shown. Dashed geometric shapes (white) indicate pre-defined areas of analysis. Scale bars=50 $\mu \mathrm{m}$. \mathbf{c}. Pearson's coefficient (\mathbf{r}) correlation between retinal $12 F 4^{+} A \beta_{42}$ burden in both V and L (All) blood vessels against brain CAA score. d-e. Merged and separate channels of representative fluorescent images for 12F4 (A ${ }_{42}$, green), PDGFR β (red) and DAPI (nuclei, blue) in paraffin embedded retinal cross-sections isolated from age and sex-matched human subjects with AD and MCI. Arrows point at A β_{42} in PDGFR β^{+}cells. Both retinal V and L blood vessels in d. MCl and e . AD patients are shown (yrs=years old; $\mathrm{F}=$ female; $\mathrm{C}=\mathrm{Caucasian)} .\mathrm{Scale} \mathrm{bars=10} \mathrm{\mu m}$.

Supplementary Figure 7. Expanded representative images for $A \beta_{42}$, PDGFR β, lectin and DAPI. a-f. Merged and separate channels of representative fluorescent images for 12F4 (A β_{42}, white), PDGFR β (red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCl or cognitively normal (CN). a-c. Vertical and d-f. Longitudinal vessels are shown (yrs=years old; F=female; C=Caucasian). Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 8. Extended data on retinal vascular $A \beta_{40}$ deposits from MCl and $A D$ human donors compared to cognitively normal controls. a. Representative horseradish peroxidase and 3,3'-Diaminobenzidine (DAB) staining of images for 11A50-B10-A β_{40} in retinas from AD and cognitively normal (CN) subjects. Arrows indicate vascular $A \beta_{40}$ staining in tunica intima and media. Scale bars $=20 \mu \mathrm{~m}$. b. Representative fluorescent microscope images of paraf-fin-embadded retinal cross-sections from AD, MCI and CN stained against A $\beta 40$ (JRF/cA $30 / 28$ antibody; green), endothelial cells (CD31; red) and nuclei (DAPI, blue). c. Quantitative analysis of retinal vascular A $\beta_{40}-$ IR area in a subset of $\mathrm{MCI}(n=4), A D(n=6)$ and $C N(n=4)$ human donors. Data from individual human donors as well as group means and SEMs are shown. ${ }^{* *} p<0.01$, ${ }^{* * * *} p<0.0001$, by one-way ANOVA test with Sidak's post-hoc multiple comparison test. Fold change are shown in red. d. Pearson's coefficient (r) correlation between retinal A β_{40} burden (11A50-B10-IR area) in both vertical and longitudinal vasculature (average) against CAA score in parenchymal brain average (grey) and entorhinal cortex (EC, red), within a subset of subjects with AD, MCI and CN (n=10). e. High-magnification images showing co-localization of vascular $A \beta_{40}$ (green) and PDGFR β (red; co-localization indiacted by arrows) in a MCI subject yrs=years old; F=female; C=Caucasian). Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 9. Extended representative images for retinal $A \beta_{40}$. a-b. Merged and separate channels of representative fluorescent images for 11A50-B10 (A β_{40}, red), lectin (glycoprotein in blood vessel, green) and DAPI (nuclei, blue) in paraffin-embadded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). a. Vertical and b. Longitudinal vessels are shown(yrs=years old; F=female; C=Caucasian; A=Asian). Scale bars=10 mm .

Supplementary Figure 10. Supplementary information for quantification of $A \beta_{40}$ in human retina. a-d. Quantitative analysis of 11A50-B10 (A 4_{40}) immunoreactive (IR) area (normalized by retinal thickness) in retinal layers (from inner to outer limiting membrane) from each retinal quadrant separately: a. NS, \mathbf{b}. IN, c. ST, d. TI in AD ($n=17$), MCI $(n=8)$, and $C N(n=11)$ human donors. e. Pearson's coefficient (r) correlation between $A \beta_{40} I R$ area and retinal $A \beta_{40}$ burden in blood vessels ($n=26$). f-j. Quantitative analysis of raw data of 11A50-B10 (A β_{40})-IR area in retinal layers from each retinal quadrant separately and all quadrants together: \mathbf{f}. all retinal quadrants, \mathbf{g}. NS, \mathbf{h}. IN, i. ST and j. TI in AD ($n=17$), MCI ($\mathrm{n}=8$) and CN ($\mathrm{n}=11$) human donors. ${ }^{*} p<0.05,{ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$, ${ }^{* * * *} p<0.0001$, by one-way ANOVA test with Sidak's post-hoc multiple comparison test. Fold changes are shown in red.

Supplementary Figure 11. Extended data of inner vs. outer retinal $A \beta_{40}$ and mapping for all four retinal quadrants. a-e. Quantitative analysis of raw data of $A \beta_{40}$-immunoreactive (IR) area in inner retinal layers from each retinal quadrant separately and all quadrants together: a. NS, b. IN, c. ST, d. TI, e. all, in AD ($n=17$), MCI ($n=8$) and $C N(n=11)$ human donors. f-j. Quantitative analysis of raw data of $A \beta 40-I R$ area in outer retinal layers from each retinal quadrant separately and all quadrants together: f. NS, g. IN, h. ST, i. TI, j. all, in AD ($n=17$), MCI ($n=8$) and $C N(n=11)$ human donors. k. Mapping of $A \beta_{40}$ in four retinal quadrants (* indicates AD vs. $C N$, * indicates $A D$ vs. $M C I)$. I. Pearson's coefficient (r) correlation between $A \beta_{40}$ IR area against \% PDGFR β-IR area in vessels ($n=28$). Data from individual human donor as well as group means and SEMs are shown. ${ }^{*} p<0.05,{ }^{* *} p<0.01$, ${ }^{* * *} p<$ $0.001,{ }^{* * * *} p<0.0001$, by one-way or two-way ANOVA test with Sidak's post-hoc multiple comparison test. Fold changes are shown in red.
a.

CN

Supplementary Figure 12. Extended representative images for LRP-1 in figure 6. a-b. Merged and separate channels of representative fluorescent images for LRP-1 (red), PDGFR β (green), lectin (glycoprotein in blood vessel, white) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD or cognitively normal (CN). a. CN and \mathbf{b}. $A D$ are shown. Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 13. Extended representative images for cleaved caspase-3 in figure 6. a-d. Merged and separate channels of fluorescent images for cleaved caspase-3 (red), PDGFR β (green), lectin (glycoprotein in blood vessel, white) and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). a. CN, b. MCl and c-d. AD are shown. Scale bars=10 m.
a.

b.

MCI

d.

TUNEL PDGFR β

TUNEL

PDGFRß DAPI

Supplementary Figure 14. Extended representative images for TUNEL staining in figure 6. a-d. Merged and separate channels of fluorescent images for TUNEL (green), PDGFR (red), and DAPI (nuclei, blue) in paraffin-embedded retinal cross-sections isolated from age and sex-matched human donors with AD, MCI or cognitively normal (CN). a. CN, b. MCl and c-d. AD are shown. Scale bars=10 $\mu \mathrm{m}$.

Table S1. Demographic data on human eye donors evaluated by retinal cross-section.

	CN	MCl	AD	F	P
No. of Subjects$\text { (} n=46 \text {) }$	14	11	21	-	-
	(9F, 5M)	(5F, 6M)	(13F, 8M)		
Age \pm SD	79.14 ± 10.5	87.09 ± 5.4	81.81 ± 14.9	1.404	0.2567
[Years]	F: 79.78 ± 12.3	F, 90.2 ± 3.6	F, 85.61 ± 12.6		
	M: 78.0 ± 7.3	M, 84.5 ± 5.5	M, 67.2 ± 16.7		
Race	13C (92.9\%)	7C (81.8\%)	16C (76.2\%)	-	-
(\%)	1B (7.1\%)	1H (9.1\%)	1B (4.8\%)		
		1B (9.1\%)	4A (19\%)		
PMI	7.5 ± 2.3	9.5 ± 5.0	7.6 ± 3.7	1.120	0.3355
[Hours]					

CN cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer's disease; F, female, M, male; SD, standard deviation; C, Caucasian; B, Black; H, Hispanic; A, Asian, UK Unknown; PMI, post-mortem interval; Values are presented as mean $\pm S D$. F and P values were determined by one-way ANOVA with Sidak's multiple comparison test.

Table S2. Neuropathological evaluation in a subset of human donors evaluated by retinal cross-section.

Brain Scores	CN* $^{*}(\mathrm{n}=1)$	$\mathrm{MCI}(\mathrm{n}=7)$	$\mathrm{AD}(\mathrm{n}=17)$
CAA	1	0.7 ± 0.97	1.3 ± 0.75
A β Plaque	0.545	2.11 ± 0.77	2.8 ± 0.93
Neurofibrillary Tangle	0.98	1.46 ± 0.99	2.5 ± 1.3
Neuropil Thread	0.86	1.1 ± 0.93	1.13 ± 1.2
Atrophy	0.8	1.09 ± 1.08	2.05 ± 1.2

CN cognitively normal; MCl , mild cognitive impairment; AD, Alzheimer's disease; A neuropathological score from one CN donor. CAA, cerebral amyloid angiopathy.

Table S3. Multiple correlation analysis between \% retinal PDGF β area in vessels and neuropathological parameters

		Neuritic Plaques	Immature Plaques	Diffuse Plaque	NFTs (Silver)	Neuropil Threads
All Brain	r	- 0.50	-0.36	-0.45	- 0.07	- 0.03
	P	0.0264	0.1224	0.0443	0.7801	0.9022
Hippocampus	r	- 0.61	-0.40	-0.38	-0.17	0.12
	P	0.0046	0.0802	0.0986	0.4622	0.6184
Entorhinal Cortex	r	0.26	-0.01	0.35	0.15	-0.23
	P	0.0433	0.2598	0.3403	0.4902	0.5154
Frontal Cortex	r	-0.01	-0.30	-0.04	-0.38	- 0.34
	P	0.9543	0.1990	0.8586	0.1027	0.1396
Temporal Cortex	r	-0.06	-0.33	-0.35	-0.09	-0.18
	P	0.8066	0.1551	0.1265	0.7234	0.4504
Parietal Cortex	r	0.05	0.01	-0.28	-0.33	-0.39
	P	0.8431	0.9769	0.2280	0.1511	0.0938
$\begin{aligned} & \text { PV. Ctx. } \\ & \text { A-17 } \end{aligned}$	r	-0.32	-0.35	-0.46	-0.25	-0.55
	P	0.2134	0.1540	0.0568	0.3412	0.0175
VA. Ctx.A-18	r	-0.74	-0.30	-0.58	-0.39	-0.46
	P	0.0015	0.2598	0.0192	0.1457	0.0872

Correlations between retinal \% area of PDGF β in vessels and the corresponding neuropathological measurements: neuritic plaques, immature plaques, diffuse plaques, neurofibrillary tangles (NFTs; by Gallyas Silver stain), neuropil threads by sliver stain. Scores are given as: $0=$ None, $1=$ Sparse (-5), $3=$ Moderate (6-20), 5 = Frequent (21-30 or above) based on pathological reports. Analysis was performed for mean of all brain regions and separated for each brain region. Sample size: $n=14$ for $A D, n=5$ for $M C I$, $n=1$ for CN. Statistical significance P is <0.05 indicated in bold red color. Pearson's r correlations analysis was applied to determine relationships; PV - primary visual; VA - visual association; Ctx - cortex.

Table S4. Multiple correlation analysis between \% retinal $A \beta_{40}$ area in vessels and neuropathological parameters

		Neuritic Plaques	Immature Plaques	Diffuse Plaques	NFTs (Silver)	Neuropil Threads
All Brain	r	0.55	0.44	0.16	0.24	0.58
	P	0.0492	0.1292	0.6122	0.4278	0.0375
Hippocampus	r	0.41	0.22	0.08	0.37	0.48
Entorhinal	P	0.1649	0.4702	0.7984	0.211	0.0967
Cortex	P	0.0023	0.47	0.2	0.33	0.31
Frontal Cortex	r	0.05	0.53	0.505	0.2755	0.3018
Temporal	P	0.8747	0.0638	0.8475	0.1777	0.0616
Cortex	P	0.9878	0.23	0.02	0.06	0.57
Parietal	r	0.02	-0.09	0.9574	0.8534	0.0507
Cortex	P	0.941	0.7627	0.6274	0.14	0.6522
PV. Ctx.	r	0.18	0.6	0.21	-0.2022	
A-17	P	0.5929	0.0373	0.5179	0.5798	0.64
VA. Ctx.	r	0.54	0.53	-0.09	-0.03	0.84
A-18	P	0.1377	0.1137	0.8081	0.93	0.0042

Correlations between retinal \% area of $A \beta_{40}$ in vessels and the corresponding neuropathological measurements: neuritic plaques, immature plaques, diffuse plaques, neurofibrillary tangles (NFTs; by Gallyas Silver stain), neuropil threads by sliver stain. Scores are given as: $0=$ None, $1=$ Sparse (-5), $3=$ Moderate (6-20), $5=$ Frequent (21-30 or above) based on pathological reports. Analysis was performed for mean of all brain regions and separated for each brain region. Sample size: $n=8$ for $A D, n=3$ for $M C I$, $n=1$ for CN patients. Statistical significance P is <0.05 indicated in bold red color. Pearson's r correlations analysis was applied to determine relationships; PV - primary visual; VA - visual association; Ctx - cortex.

Table S5. Correlation between \% PDGFRß immunoreactive area per retinal subregions and MMSE scores.

Retinal Regions	Total	ST	TI	IN	NS	Superior	Inferior	Nasal	Temporal
\boldsymbol{r}	0.77	0.89	0.82	0.71	0.92	0.92	0.71	0.73	0.89
\boldsymbol{P}	0.0156	0.016	0.1825	0.0499	0.0271	0.0036	0.0486	0.0411	0.0171
\mathbf{N}	9	6	4	8	5	7	8	8	6

Total; total retinal average; ST, superiortemporal; TI, temporalinferior; IN, inferioirnasal; NS, nasalsuperior; Superior, mean of ST and NS values; Inferior, mean of TI and IN values; Nasal, mean of IN and NS values; Temporal, mean of ST and TI values. N, number of pairs. Statistical significance P is < 0.05 . Pearson's r correlations analysis was applied to determine relationships.

Table S6. Correlation between $A \beta_{40}$ burden per retinal subregions and MMSE cognitive scores.

Retinal Regions	Total	ST	TI	IN	NS	Superior	Inferior	Nasal	Temporal
\boldsymbol{r}	-0.57	-0.71	N/A	-0.65	N/A	-0.73	-0.67	-0.66	-0.75
\boldsymbol{P}	0.0827	0.0737	N/A	0.1107	N/A	0.0625	0.099	0.1062	0.0539
n	10	7	N/A	7	N/A	7	7	7	7

Total; total retinal average; ST, superiortemporal; TI, temporalinferior; IN, inferioirnasal; NS, nasalsuperior; Superior, mean of ST and NS values; Inferior, mean of TI and IN values; Nasal, mean of IN and NS values; Temporal, mean of ST and TI values. N, number of pairs. N/A, not applicable. Statistical significance P is <0.05. Pearson's r correlations analysis was applied to determine relationships.

